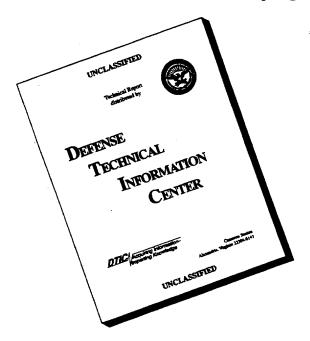
WL-TR-95-2111

DEVELOPMENT OF A BIPOLAR LEAD/ACID BATTERY FOR THE MORE ELECTRIC AIRCRAFT

JENNIFER L. ROSE

JOHNSON CONTROLS BATTERY GROUP, INC. 5757 NORTH GREEN BAY AVENUE MILWAUKEE WI 53201-0591

SEPTEMBER 1995


FINAL REPORT FOR 09/01/91-09/30/95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19960717 009

AERO PROPULSION AND POWER DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7650

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, of sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

R.A. MARSH

Project Engineer

R.A. MARSH, Chief

Battery Electrochemistry Section

Power Technology Branch

MICHAEL D. BRAYDICH, Lt Col, USAF Chief, Aerospace Power Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify WL/POOS-2, WPAFB, OH 45433-7251 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Deliging in dy, same 1804, Amington, 144 CLEAR 4502.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	SEPTEMBER 1995	FINAL REPORT	FOR SEP 91 to SEP 95
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
DEVELOPMENT OF A BIPOLAR MORE ELECTRIC AIRCRAFT	R LEAD/ACID BATTERY	FOR THE	CONTR: F33615-91-C-2142 P.E. 62203F PROJ #: 3145
6. AUTHOR(S)			TASK #: 29
JENNIFER L. ROSE			WORK UNIT #: L5
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
JOHNSON CONTROLS BATTERY 5757 N. GREEN BAY AVENUE MILWAUKEE, WI 53201-0591			REPORT NUMBER
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING
AERO PROPULSION AND POWER WRIGHT LABORATORY	R DIRECTORATE		AGENCY REPORT NUMBER
AIR FORCE MATERIEL COMMAN	TD.		WL-TR-95-2111
WRIGHT PATTERSON AFB, OH	· -		WE-IK-95-2111
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEA	ASE, DISTRIBUTION UN	LIMITED.	
			,
13. ABSTRACT (Maximum 200 words)			
This report summarizes	the development work	c completed und	er contract
	-	-	Sentember 1995 Initial

This report summarizes the development work completed under contract F33615-91-C-2142 for the time period of September 1991 to September 1995. Initial work targeted the development of a filled polymeric composite substrate for use in a true bipolar lead acid battery. Efforts were refocused on metallic substrate technology in Month 33, and concluded with the delivery of battery systems to Wright Laboratory.

14. SUBJECT TERMS			15. NUMBER OF PAGES
BIPOLAR BATTERY			87
DUPLEX ELECTRODE			16. PRICE CODE
ELECTRODE SUBSTRATE			
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE		SAR
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	D.H.C.

TABLE OF CONTENTS

1.0	SUMN	IARY	1
2.0	WORI	K BREAKDOWN STRUCTURE	2
3.0	COMF	POSITE SUBSTRATE DEVELOPMENT	
	3.1	WBS 1.0 Program Management	
	3.1.1	Subtask 1.1 Managing Strategy	4
	3.2	WBS 2.0 Battery Design	
	3.2.1	Subtask 2.1 Battery System Design Analysis	4
	3.3	WBS 3.0 Bipolar Plate	
	3.3.1	Subtask 3.1 Conductive Fillers	4
	3.3.2	Subtask 3.2 Substrate Fabrication Processes1	9
		Subtask 3.3 Stability Testing2	
	3.3.4	Subtask 3.4 Proof of Concept Testing2	.1
	3.4	WBS 5.0 Battery Fabrication	
	3.4.1	Subtask 5.1 Sealing Methods2	:3
	4.0	METALLIC SUBSTRATE DEVELOPMENT	
	4.1	WBS 1.0 Program Management	
	4.1.1	Subtask 1.1 Managing Strategy	26
	4.2	WBS 2.0 Battery Design	
	4.2.1	Subtask 2.1 Battery System Design Analysis	26
	4.3	WBS 3.0 Bipolar Plate	
	4.3.1	Subtask 3.1 Multialloy Substrate Development	26
	4.3.2		30
	4.3.3	Subtask 3.3 Substrate Corrosion Testing	3 I
	4.3.4	Subtask 3.4 Small Scale Characterization	31
	4.4	WBS 4.0 Battery Components	
	4.4.1	Subtask 4.2 Active Material Development	33
	4.5	WBS 5.0 Battery Fabrication	~~
	4.5.1	Subtask 5.1 Sealing Methods	33 22
	4.5.2	Subtask 5.2 Formation	31
	4.6	WBS 6.0 BMET Demonstration	
	4.6.1	Subtask 6.1 Deliverables	38 20
		4.6.1.1 24-Volt Injection Molded Containment Trials	38
		4.6.1.2 Gasketed Containment	41
	APPI	ENDICES	
	A.	Resistivity Testing	44
	B.	_	78

LIST OF FIGURES

Figure 1	BMET Work Breakdown Schedule	3
Figure 2	Composite Development: Gantt Chart with Milestones	5
Figure 3	Near- and Far-Term BMET Bipolar Battery Projections	6
Figure 4	Near-Term System Performance and Specifications	7
Figure 5	Far-Term System Performance and Specifications	8
Figure 6	Main Engine Starting: Chemset vs F2 Active Materials	9
Figure 7	Main Engine Starting: Performance as a Function of Temperature	10
Figure 8	Ground Power: Chemset vs F2 Active Materials	11
Figure 9	Ground Power: Performance as a Function of Temperature	12
Figure 10	Ground Power: Capacity as a Function of Temperature	13
Figure 11	APU Starting: Chemset vs F2 Active Materials	14
Figure 12	APU Starting: Performance as a Function of Temperature	15
Figure 13	Emergency Power: Chemset vs F2 Active Materials	16
Figure 14	Emergency Power: Performance as a Function of Temperature	17
Figure 15	Stability Test Fixture	22
•	Composite Battery Builds	
Figure 17	No-Cost Time Extension Gantt Chart	27
Figure 18	No-Cost Time Extension Deliverable Gantt Chart	28
Figure 19	Constant Power Performance Projections: Metallic Substrate Bipolar	29
Figure 20	Constant Power Performance Normalized to Mass and Volume	32
_	Small Scale Characterization: Capacity Development	
•	Small Scale Characterization: Peukert	
_	Small Scale Characterization: Ragone	
_	Small Scale Characterization: Discharge Time vs Power	
Figure 25	Voltage Drop Across Intermodule Connector Candidate Materials	42

1.0 SUMMARY

A 36-month contract was undertaken by Johnson Controls Battery Group, Inc. to develop a highly conductive, non-porous, and lightweight bipolar substrate and deliver a 56-volt prototype module for evaluation for the More Electric Aircraft. Eighteen months into Contract #F33615-91-C-2142, significant accomplishments were reported in the identification of suitable composite materials and in optimizing the compounding parameters of same. Laminated, 8 cm (L) x 8 cm (H) x 0.102 cm (TH) substrates with an overall resistivity of 4-6 Ω -cm were routinely manufactured in-house and used in battery builds. Over 150 cycles were demonstrated to 100% DOD at 0.16 A/cm² in a 4-volt battery configuration. Mass production oriented container molding was also demonstrated, however, process reliability was a major concern. Critical evaluation of the project in Month 33 recognized the difficulties in addressing recurrent substrate and paste adhesion delamination, as well as those to be solved in achieving high power (0.48+ A/cm²) capability from a 400+ cm² electrode. High power capability from a composite substrate was not deemed likely in the remaining contract period. Therefore, given its success in a parallel internally funded bipolar program, JCBGI requested a no-cost time extension to evaluate a new approach in metallic bipolar substrate technology. Five attempts were made at cladding strips of various corrosion resistant alloys, however, resultant materials were never suited to pasting or battery builds. Concurrent efforts to redesign the injection molded container succeeded in eliminating internal distortion of the metallic electrodes, but failed to resolve cell-to-cell leakage around the fill ports. At contract's end, deliverables utilizing a binary lead alloy and an alternative containment design were assembled, formed and delivered to WPAFB for test and evaluation.

Future composite bipolar substrate investigations based upon this body of work should focus on fostering positive paste adhesion. Continued metallic substrate work would benefit most from efforts to increase the substrate strength and corrosion resistance. Both designs require additional development of the injection molded containment concept to eliminate the catastrophic cell-to-cell leakage exhibited at the close of this contract.

2.0. WORK BREAKDOWN SCHEDULE

As with other contract work performed at JCBGI, a Work Breakdown Schedule (WBS) was implemented to plan, execute, and monitor technical progress, costs, and scheduling. Tasks were identified as unitary efforts necessary to complete individual aspects of battery development, and subtasks further delineated each task. Composite plans, shown in Figure 1, were easily translated in August 1994 to more closely describe the efforts necessary to assemble a 24-volt bipolar battery utilizing metallic based substrates. These interpretations are shown in parentheses next to the composite substrate counterparts within Figure 1.

FIGURE 1: BMET WORK BREAKDOWN SCHEDULE

WBS 1.0 PROGRAM MANAGEMENT

- Subtask 1.1 Managing Strategy
- Subtask 1.2 Liaison/Meetings
- Subtask 1.3 Documentation
- Subtask 1.4 Contract Administration
- Subtask 1.5 Operating Supplies

WBS 2.0 BATTERY DESIGN

- Subtask 2.1 Battery System Design Analysis
- Subtask 2.2 Performance Modeling

WBS 3.0 BIPOLAR PLATE

- Subtask 3.1 Conductive Fillers (Multi-Alloy Substrate Development)
- Subtask 3.2 Substrate Fabrication Processes (Rolling/Embossing Work)
- Subtask 3.3 Stability Testing (Corrosion Testing)
- Subtask 3.4 Proof of Concept Testing (Small Scale Characterization)

WBS 4.0 BATTERY COMPONENTS

- Subtask 4.1 Separator Material
- Subtask 4.2 Active Material Development (Freeze/Thaw Work)

WBS 5.0 BATTERY FABRICATION

- Subtask 5.1 Sealing Methods (Lead to Plastic Interface Seal)
- Subtask 5.2 Formation

WBS 6.0 BMET DEMONSTRATION

- Subtask 6.1 Battery Fabrication (Deliverables)
- Subtask 6.2 Testing (Group 34 Cycling)

3.0 COMPOSITE SUBSTRATE DEVELOPMENT

3.1 WBS 1.0 PROGRAM MANAGEMENT

3.1.1 Subtask 1.1 Managing Strategy

Five review meetings were scheduled and attended by WPAFB and JCBGI personnel. These dates, as well as milestones achieved during the composite development phase of the contract, are shown in Gantt chart form in Figure 2.

3.2 WBS 2.0 BATTERY DESIGN

3.2.1 Subtask 2.1 Battery System Design Analysis

Preliminary performance requirements for the More Electric Aircraft (MEA) energy source were given to JCBGI by Richard Flake of WPAFB during the program kickoff meeting on December 12, 1991. The following energy sources were required:

Main Engine Starting:

150 kW, 30 sec

Ground Power:

25-75 kW, 30-45 min

Emergency Power:

75 kW, 10 min

APU Starting:

5-10 kW, 15 sec

Hybrid Emergency:

50-75 kW, 60 sec

Temperature Range:

-65°F to 120°F

Voltage Window:

270 volts (min), 330 volts (max)

Given this, JCBGI proceeded to use its proprietary lead/acid battery mathematical model to design near- and far-term bipolar systems having 5- and 10- year development time frames. Near-term modeling assumed that substrate program goals were reached and conventional active materials were used. The 10-year battery systems were projected assuming a thinner, more conductive substrate and improved active materials. The results, shown in Figures 3 through 14, dramatically illustrate the system configuration's dependence on application. Designs required as little as 0.18 ft³ with a system mass of 33 pounds to as much as 8.13 ft³ and 1349 pounds.

3.3 WBS 3.0 BIPOLAR PLATE

3.3.1 Subtask 3.1 Conductive Fillers

Initial work was focused on identifying an electronically conductive, filled polymeric composite having negligible ionic conduction which could short adjacent cells. The substrate was likewise required to be chemically inert to the electrode reactions, to have high oxygen and hydgrogen overpotentials in H.SO₂, and to be readily manufactured.

FIGURE 2: Composite Development Gantt Chart with Milestones

	19	991	***************************************	_	992			1993	3			994	
	-	2	3	4 5	9	7	ω	6	10 1	-	2 1	3 1,	4 15
T					:		:				-	⋖	
1.2 Liaison/Meetings		4				4-	SI	4 4	a	:	1 —		1
								V - 1000000			į	<u> </u>	:
2.1 Datterly System Design				:			:				<u> </u>	-i	:
3.1 Conductive Fillers				8	\circ					[-	~~ ~
3.2 Substrate Fabrication Processes			ш	<u></u>						王			
3.3 Stability Testing												•	
3.4 Proof of Concept Testing													
WBS 4.0 BATTERY COMPONENT DEVELOPMENT							:						-
4.1 Separator Development								***************************************	Ш		\prod		-
4.2 Active Material Development						3							
WBS 5.0 BATTERY FABRICATION DEVELOPMENT					(VA FA) AND FEB		1		Ī	water a contract to	_		
5.1 Sealing Methods		***************************************			***		7.7		되			Ш	SOULINE STATES
5.2 Formation Processes													
WBS 6.0 BMET POWER SOURCE DEMONSTRATION				-									
6.1 Battery Fabrication		- CHANGE COLORES					· · · · · · · · · · · · · · · · · · ·		-			and the second	
6.2 Testing												1	7
The state of the s	<u> </u>	_	liffed	pedop	Qualified doped oxide supplier	pplier							
the control of the co	[B]		bility o	f doped	Stability of doped oxide proven.	proven	Sing .	e filler	to be	Single filler to be pursued	Ti	:	-
	<u>S</u>	_	perati	ve deve	Cooperative development and supply agreement with oxide vendor discussed.	t and s	: nbbly	agreem	ent wil	h oxide	· vend	or disc	ussed.
The second secon	<u></u>	_	nsiste	ntly sta	Consistently stable 0.025-0.030"	25-0.03		thick parts produced.	s produ	rced.			
e and any the entry of the second and an analysis of the second and an analysis of the second and the second an	<u> </u>		nductiv		Conductive filler work completed	omplete	∂d.		•				
este composition con removemente amende a national section of the		ш	Begin LDPE	oE sub	substrate fabrication development.	bricatic	n deve	lopmer	≓				
entransiere de la constituente communication destinations destinations de la constituence	<u>ල</u>		nsisteı	ntly sta	Consistently stable 0.080" thick parts produced	30" thic	k parts	brodn	ced.				
a and a law white of Haymighton accommendate disconnected above the law and a law and the law of the desired above the second	Ξ		Extrusion trial.	rrial.				:	;			-	
S A LE SAMO AND A MENINAMENTALINOMININAMENTALINAMENTALIS SAMO SAMO SAMO SAMO SAMO SAMO SAMO SAM		Co	posite	bipola	Composite bipolar batteries achieve 2 A/in2 for 30 sec and 32 cycles.	ies ach	ieve 2	A/in2	or 30	sec an	d 32	sycles.	
	<u>=</u>	_	in suk	strate	Begin substrate to paste interface adhesion studies.	interfa	ice adr	esion	studies		:	-	ļ
	区:		ction	molded	Injection molded container trial proven feasible with	er tria י	prove	n teas	in eldi	in com	posite	composite substrate	ate.
ANTHAL MANAGAMAN ANTHAL ANTHA) -	Technical	direction	direction refocussed on metallic substrate	nssed	on me	allic si	Jostrai	le∧en €	development	 :	
		1		-									

FIGURE 3

NEAR AND FAR TERM BMET BIPOLAR BATTERY SPECIFICATIONS

BATTERY TYPE	NEAR TERM	FAR TERM
Main Engine Starting		
Mass Volume	450 lbs. 2.45 ft ³	389 lbs. 2.00 ft ³
Ground Power		
Lower Capacity Unit Mass Volume	1000 lbs. 6.15 ft ³	865 lbs. 4.85 ft ³
Higher Capacity Unit Mass Volume	1349 lbs. 8.13 ft ³	1235 lbs 6.72 ft ³
APU Starting		
Mass Volume Volume	33.4 lbs. 0.18 ft ³	30.6 lbs 0.16 ft ³
Assumptions:		
Substrate Thickness Substrate Weight Substrate Resistivity	0.025" 150 mg/cm ² 2.0 Ω-cm	0.010" 80 mg/cm ² ~0 Ω-cm

FIGURE 4

BMET PERFORMANCE REQUIREMENTS BIPOLAR BATTERY SPECIFICATIONS Near Term Projections (within 5 years) 330 Volt Battery Systems

REQUIREMENTS MET	BATTERY DIMENSIONS	BATTERY VOLUME	BATTERY WEIGHT	W/kg	W/cm3	W-hr/kg	W- hr/cm3
Main Engine Starting APV Starting Hybrid Emergency	17.6"x15.5"x15.5"	2.45 ft3	450 lbs	747.9	2.2	12.25	0.036
Main Engine Starting Ground Power Emergency Power APU Starting Hybrid Emergency							
Scenario 1 30 minute ground power capacity	27.4"x19.7"x19.7"	6.15 ft3	1000 lbs	62.2	0.16	31.08	0.081
Scenario 2 45 minute ground power capacity	36.2"x19.7"x19.7"	8.13 ft3	1349 lbs	46.1	0.12	34.56	0.092
APU Starting	16.5"x4.33"x4.33"	0.18 ft3	33 lbs	705.0	2.1	11.75	0.036

FIGURE 5

BMET PERFORMANCE REQUIREMENTS BIPOLAR BATTERY SPECIFICATIONS Far Term Projections (10 years) 330 Volt Battery Systems

REQUIREMENTS MET	BATTERY DIMENSIONS	BATTERY VOLUME	BATTERY WEIGHT	W/kg	W/cm3	W-hr/kg	W- hr/cm3
Main Engine Starting APV Starting Hybrid Emergency	14.4"×15.5"×15.5"	2.00 ft3	389 lbs	895.3	2.8	14.17	0.044
Main Engine Starting Ground Power Emergency Power APU Starting Hybrid Emergency							
Scenario 1 30 minute ground power capacity	21.6"x19.7"x19.7"	4.85 ft3	864 lbs	72.0	0.21	35.97	0.103
Scenario 2 45 minute ground power capacity	29.9"x19.7"x19.7"	6.72 ft3	1235 lbs	50.6	0.15	37.77	0.111
APU Starting	15.2"x4.33"x4.33"	0.16 ft3	31 lbs	772.0	2.3	12.87	0.041

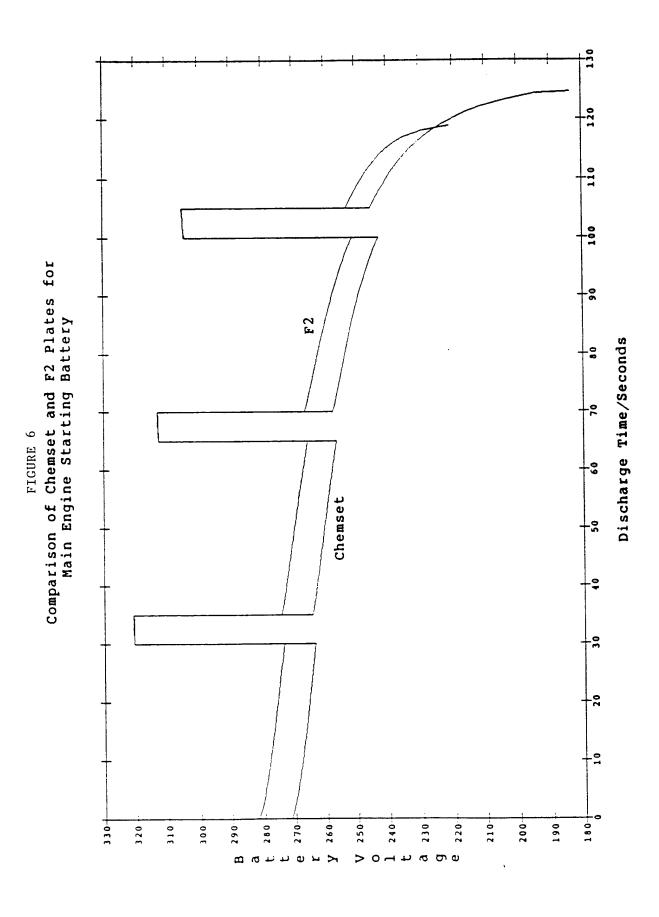
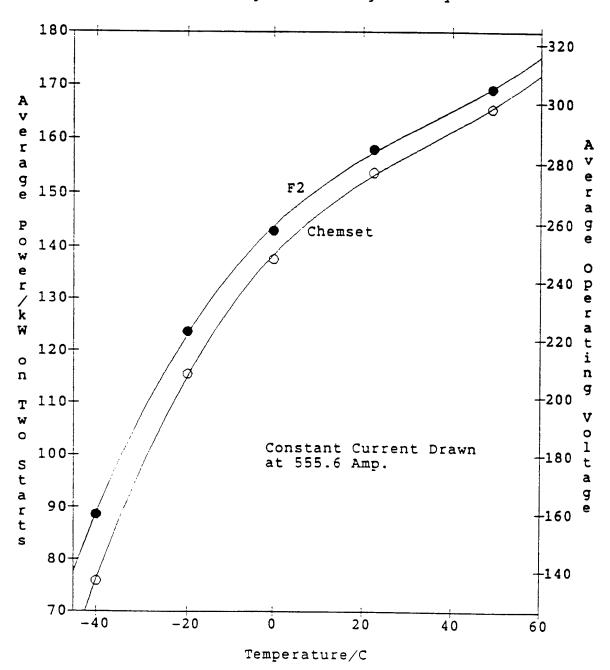



FIGURE 7
Effect of Temperature on Performance of Main Engine Starting Battery

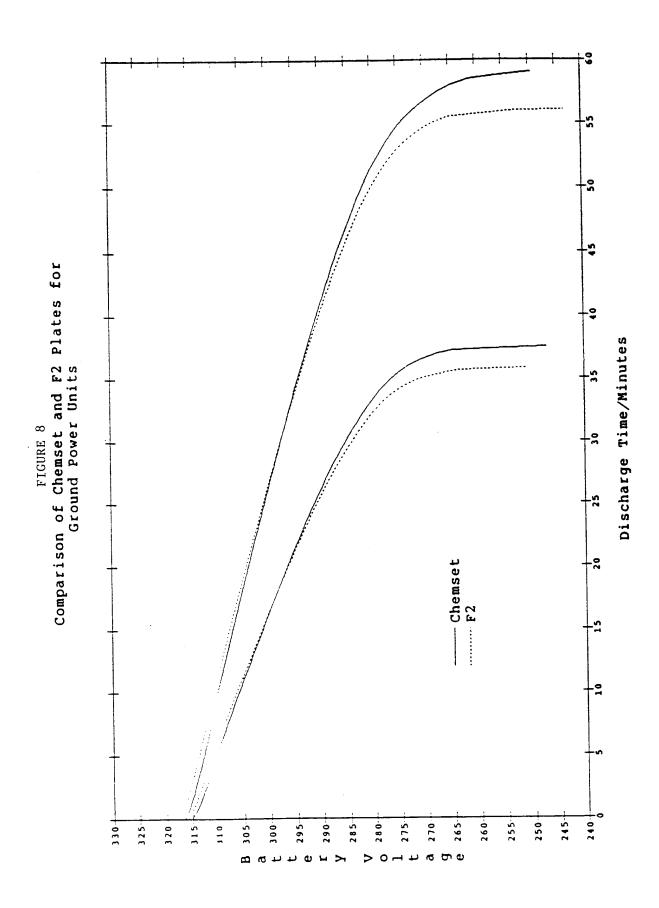


FIGURE 9

Effect of Temperature on Power Output of the Ground Units

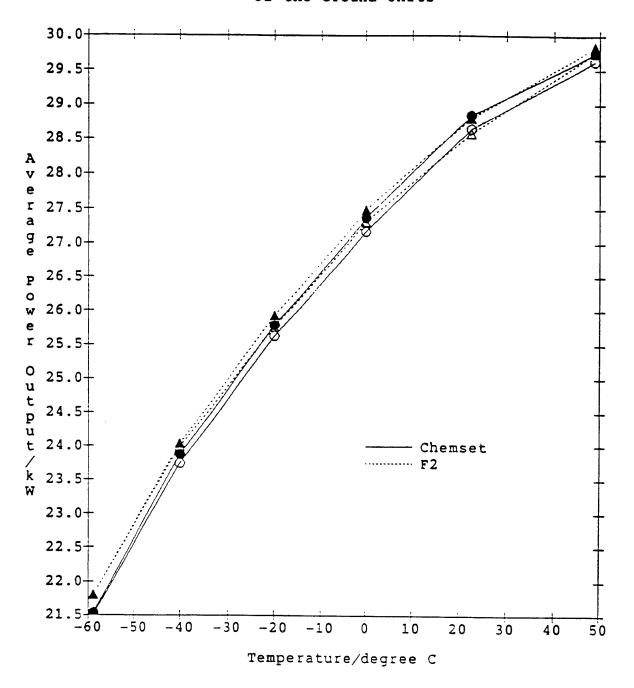
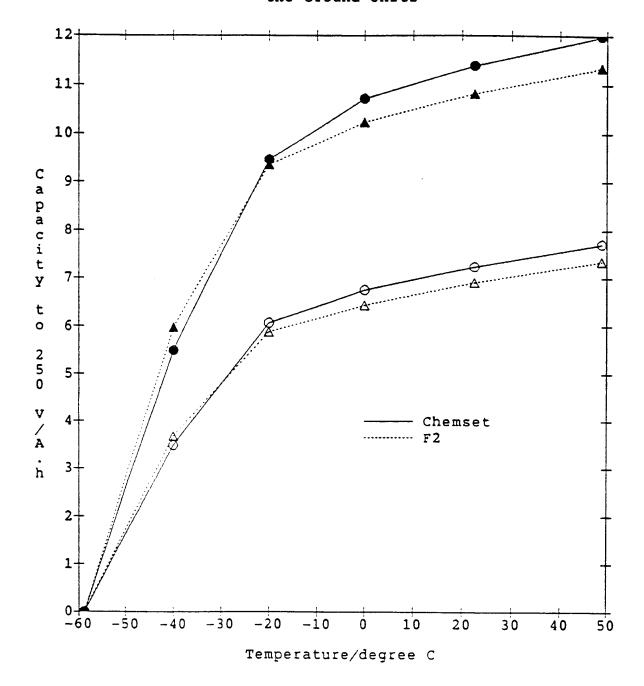



FIGURE 10

Effect of Temperature on Capacity of the Ground Units

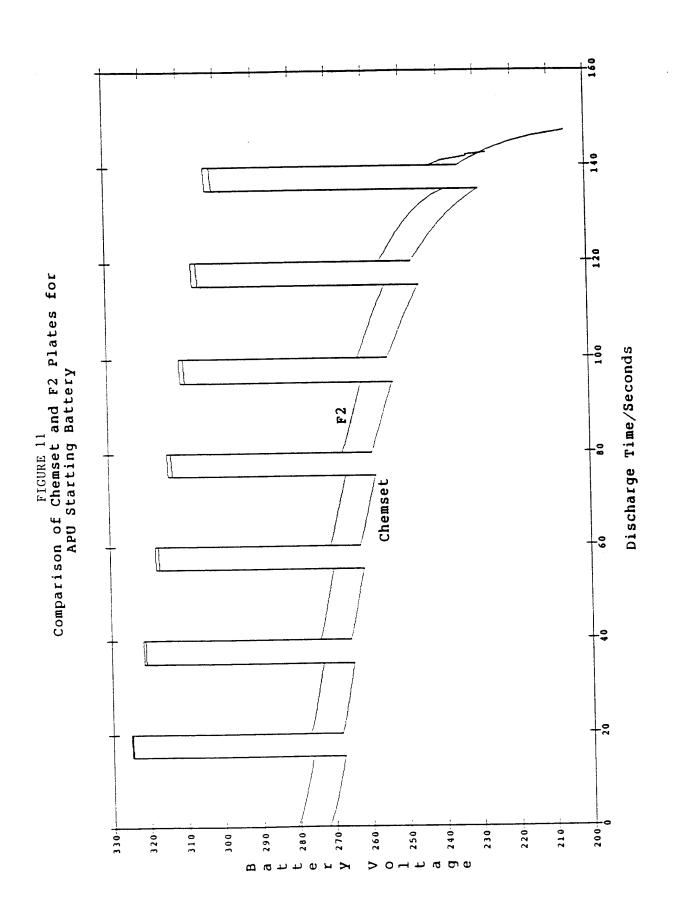
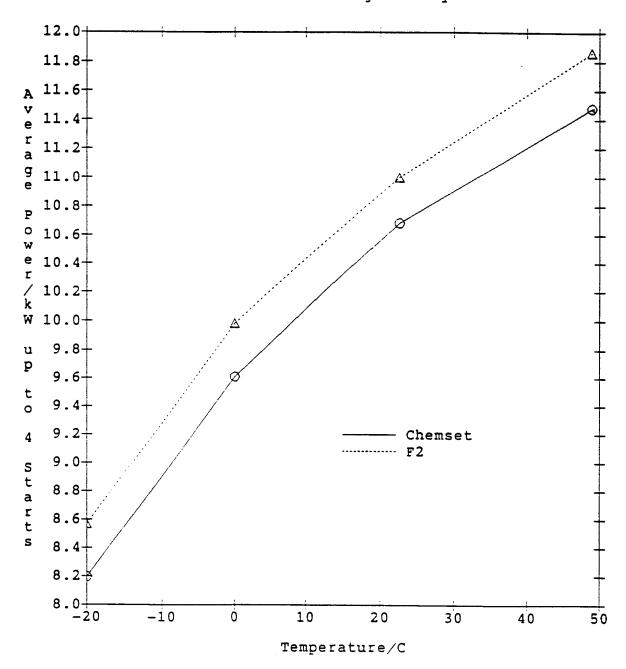



FIGURE 12
Effect of Temperature on Performance of APU Starting Battery

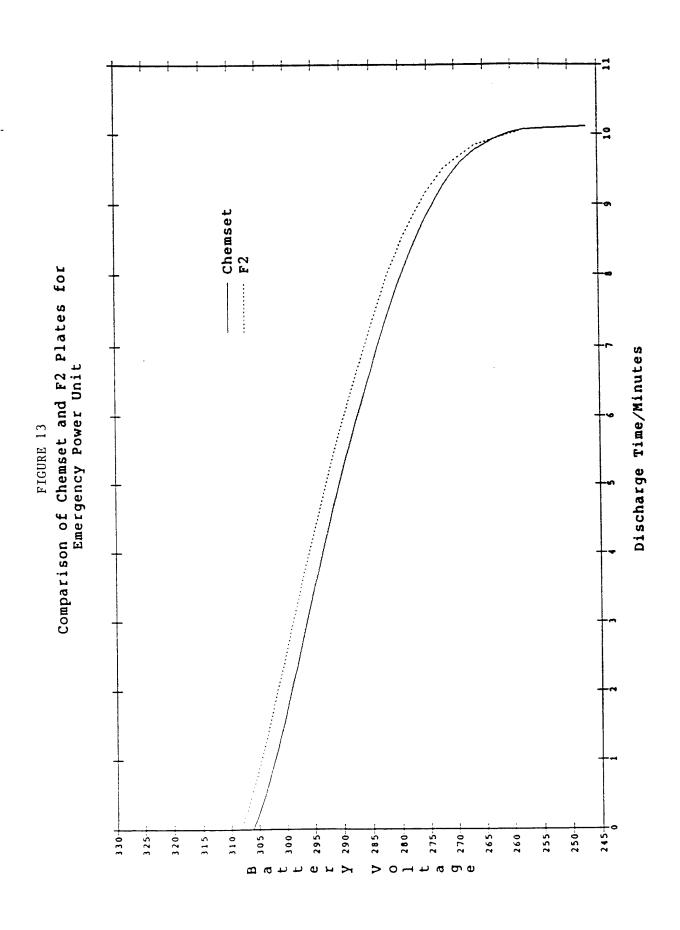
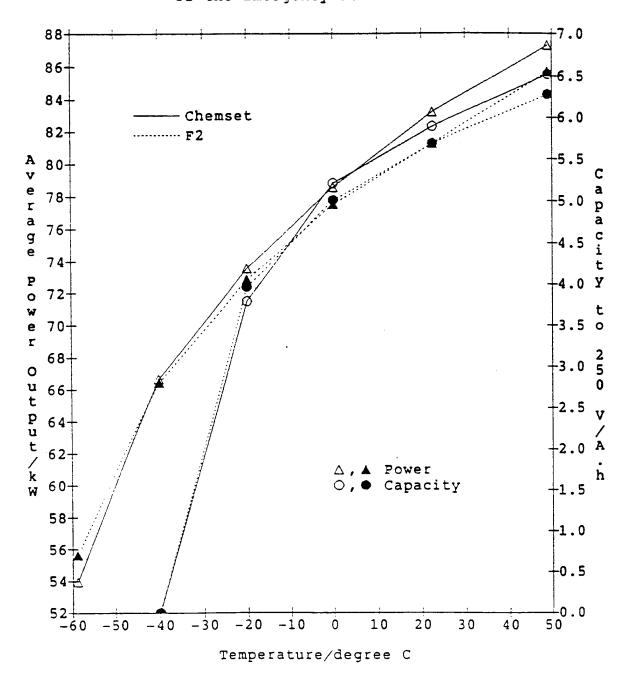



FIGURE 14

Effect of Temperature on Performance of the Emergency Power Unit

Recognizing the recommendations from previous WPAFB work performed at JCBGI, conductive filler development resumed with further investigation of doped oxide. Coated glass fibers were also studied.

Initial work with Photon Energy Systems (PES) focused on coating doped oxide onto glass fibers. Four separate attempts were made with poor results. The first lot did not withstand the acid environment, and the second lacked uniformity and conductivity. Coated fibers from the third trial possessed no adhesion between the oxide and glass, hence were impossible to handle or compound into plastic. PES ultimately did coat 2-6" long fibers during a fourth trial, but was unable to supply the shorter lengths required for this application. Activity in this area was subsequently discontinued.

Efforts by Materials and Electrochemical Research, Inc. (MER) to produce a dense plaque of doped oxide met with similar difficulties. Prototype samples lost all conductivity and dissolved when put in contact with H₂SO₄. A carbide compound was also provided, but found too resistive. No further attempts were made.

Two companies were next contacted for samples of doped oxide in powder form. Provided materials were extremely similar in particle size and appearance, and remained stable throughout acid leach testing. Replicate samples of 85% and 90% loaded plastic were then prepared. Measurements showed the oxide from Magnesium Elektron, Inc. (MEI) to be seven to fifteen times more conductive than that obtained from Crystal Research, Inc. (CRI). Throughout ensuing months, MEI recognized the product potential, entered into a joint development (JD) effort with JCBGI, and supplied over \$110,000 worth of oxide to JCBGI at no cost. Leftover material was returned per the appropriate clause in the JD. Additional oxides doped with other elements were prepared by MEI late in the contract, but shown highly resistive and unstable during JCBGI testing. MEI was also instrumental in providing compounding expertise that greatly expedited the development effort.

Particle size optimization was one such area in which MEI provided invaluable help. JCBGI initially believed that a smaller particle size (1 micron) would reduce porosity due to its being more easily wetted by the surrounding plastic resin. Trials using fines screened from the supplied material proved the contrary with regard to both conductivity and porosity. Resistivity readings increased twenty-fold. Discussions with MEI's compounding experts revealed that the use of uniformly shaped, ultrafine particles made it more difficult to achieve the needed particle-to-particle chain of contact through the thickness of the material, i.e. increased resistance. The smaller particle size also increased the available surface area at which pores could and did develop. All contract work was performed using particles roughly 3-5 microns in diameter. Use

of the estimated 10-20 micron optimum particle would have required an entirely different production method. Time and associated costs of the changeover were far beyond the scope of this program.

Subsequent electrical testing of the MEI material showed the doped oxide to lack stability at negative electrode potentials. This finding required doped oxide be used as a laminate in conjunction with a material better able to withstand the environment at the negative plate. Carbon black was immediately proposed as the ideal partner, having been previously identified as highly conductive, lightweight, readily available and stable at negative potentials during the first WPAFB contract. Compounding trials optimized the loading, resulting in highly conductive parts that were also very flexible.

Compounding descriptions and the corresponding conductivity measurements are provided as figures in the text.

3.3.2 Subtask 3.2 Substrate Fabrication Techniques

Given the limited batch size and trial-to-trial variability in hand compounding plastic and filler, resins were carefully chosen for study. These included low-density polyethylene (LDPE), fluoropolymer formulations (Kynar), polytetrafluoroethylene (PTFE), and high-density polyethylene (HDPE).

Given its use in prior WPAFB-sponsored work, initial efforts focused on LDPE and MicrotheneTM from Quantum Chemical Corporation was purchased. A powdered form was requested and received to facilitate uniform filler dispersion with minimum porosity. Dry mixing of the filler and resin was accomplished by hand using a mortar-and-pestle early on in the contract. This was later replaced by V-blending. The mixture was then melt blended in a twin screw extruder to produce pellets that were compression molded into sheet form. Early samples were thick (0.070") and used exclusively for proving the stability of the filler. After several successful resistivity tests, work was redirected on thinning the part and making it more conductive.

Another resin, PTFE, was investigated concurrently. Loadings from 70-75% produced highly conductive parts, however, these were also very porous. Investigations were undertaken with Imprex, Inc. to impregnate the porous parts under vacuum with a polycarbonate-based liquid resin to reduce the porosity without hindering the conductivity. PTFE development was stopped when samples were shown to have remained porous and become even more resistive following treatment.

Kynar was also explored for use as a base resin. The material showed initial promise, during producing conductive and nonporous material during hand compounding trials. However, the 375°C temperature needed to soften and melt the resin degraded the doped oxide. LDPE and Kynar blends resulted in conductive but highly porous material. Development in this area was discontinued given the successes with LDPE.

Additives were next employed to improve the physical properties of the substrate. Coupling agents, oils, acids, acetates and silicon compounds were each investigated in an attempt to improve part conductivity, reduce porosity, and/or improve manufacturing. Coupling agents, designed to bond the filler and surrounding base resin, offered the only quantifiable advantage. Of particular note was a coupling agent available through Kenrich Chemical, Incorporated. Additions substantially improved the resultant substrate's physical properties. Order of addition was also found critical to the end product. Greatest effectiveness was had in dry mixing with doped oxide prior to adding LDPE powdered resin.

Lastly, JCBGI investigated HDPE resin in an effort to widen the operating temperature range of the battery. Initial stability tests showed high porosity levels. Increasing the melt blend temperature produced stable parts. Development was halted in June 1994 when the program's technical direction was changed (see Section 4.0 - Metallic Substrate Development).

Alternative methods of producing sheet stock were also investigated. Molded Rubber and Plastics (MRP) and JCBGI teamed to design a vacuum compression mold to remove trapped gases and produce pore free parts. Unfortunately, samples exhibited physical properties no better than parts made in the conventional manner. Work was discontinued due to the prohibitive \$75/part cost and the large volume of material needed per trial (10+ pounds).

Skiving was no more successful. Thin rolls of doped oxide in Microthene[™] were received from DeWal Industries in May 1993 for laminating and resistivity testing. Resultant laminates were 0.029-0.031" thick with resistivities in the range of 1.7-2.0 Ω-cm. Given the promise of the materials produced by DeWal's skiving process, JCBGI twice supplied additional compounded materials for processing into sheet. Doped oxide samples exhibited low initial porosities that increased as a result of the laminating process; the porosity of the carbon black material was never acceptable. Work with DeWal was subsequently discontinued.

Carbon-black development proceeded more quickly with the aid of JCBGI's zinc-bromine battery development program. Several different types of carbon-black were screened and a Ketjenblack material from Azko Chemical was chosen. Compounding trials identified an optimum carbon-black loading level that afforded parts with a conductivity of 1-1.6 ½-cm and enough flexibility to be used as a bipolar substrate.

Laminating the filled LDPE substrates was next addressed. Early laminates exhibited a resistivity higher than the sum of the constituent pieces due to the "skin" formed on the surface of each sheet when molded. Two methods of removing the "skin" were tried. The addition of carbon black at the interface prior to laminating proved effective, but difficult to perform in a uniform manner. The second and adopted method required gentle sanding of the skinned surfaces with sandpaper. Sanding prior to lamination resulted in a 50-75% reduction in part resistivity and no effect on part stability.

3.3.3 Subtask 3.3 Stability Testing

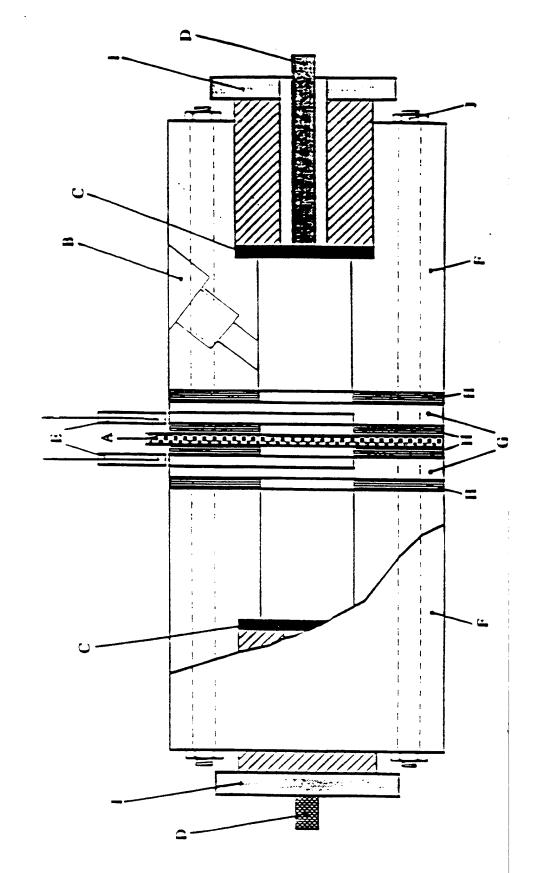
The procedure and fixture for quantifying a bipolar substrate's stability in acid and under potential were developed at JCBGI over many years. Both three- and four-point tests were required to evaluate a sample's viability.

As shown in Figure 15, a substrate sample was clamped between two hollowed polycarbonate endblocks, exposed to electrolyte, and wired as the working electrode. A potential of 1.5 volts was applied and the current collected at the top of the substrate in the three-point system. After 24 hours on test to establish a baseline current, the leads were rearranged to collect current after passing through the substrate, i.e., the four-point test. The test continued for a minimum of 3 additional days. No change in the current acceptance established the sample to be nonporous. A rising current suggested porosity or filler instability. Detailed stability results are provided in Appendix B.

Conductivity before and after the three- and four-point regimen was also monitored. An increase of 20% or more signalled porosity or filler instability. Since doped oxide had been successfully tested, an increase in resistivity was interpreted as increasing porosity, i.e., carbon-black was exposed to the positive potential as a result of the porosity causing the carbon-black to oxidize and become nonconductive.

3.3.4 Subtask 3.4 Proof of Concept Testing

Over 60 batteries of various voltages were assembled and tested. Dry, unformed electrodes with 10 in² active areas were alternately stacked with elastomeric spacers and compressed to dimension between 0.5" thick polycarbonate end plates. Insulated bolts positioned around the perimeter of the fixture were easily tightened to compress the gaskets to affect hermetic cell seals. Absorptive glass mat separator was placed between opposing electrodes and filled with electrolyte through channels machined across the upper portion of each


FIGURE 15

Stability Test Fixture

- Bipolar Substrate Reference Electrode Socket E D C B A
 - Counter Electrode Current Collector

Resistance Sensor

- Spacer with Sensor Socket Gasket Lexan Block я. О.
 - Ξ
- Counter Electrode Bushing
 - Clamping Hardware

gasket. Discharge performance routinely surpassed 5 minutes at 1 A/in², but with limited cycle life.

Laminate and positive paste adhesion were the ultimate issues and numerous approaches were investigated in attempts to foster them. Techniques included roughening the pasted surface with various grit sandpaper, embedding fibers, sintering lead dust or oxide powder onto the active areas, flame spraying lead, pretreating the plastic to increase its wettability. A review of the battery build sequence, documented in Figure 16, quickly shows that any battery formed without the use of lead sheet could not be tested due to high internal resistances caused by poor paste adhesion.

The major breakthrough occurred upon recognizing the special needs of polyolefins. Involved surface pretreatments are recognized as necessary to achieve bonds with wax-like surfaces that are difficult to wet if left alone. Surface treating LDPE prior to attaching a layer of thin lead foil decreased the part resistivity by 50-75%. Over 150 cycles were demonstrated with shorting as the cause of failure. Subsequent builds neared this benchmark, however, lead foil delamination became a recurring problem. Substrate conductivities checked prior to pasting and after cycling showing no change added to the confusion. Treatment parameters were reviewed and found incorrect, resulting in delamination within the plastic part. Optimization trials were initiated, along with investigations of HDPE resin. HDPE was proven to bond more strongly to lead sheet, but the resulting cycle life was still unacceptable. Efforts were halted with the change in the program's technical direction.

3.4 WBS 5.0 BATTERY FABRICATION

3.4.1 Subtask 5.1 Sealing Methods

Two 10-volt batteries were produced using an injection molded containment method in October 1993. Electrodes, separators and spacer frames were arranged to form a stack that was inserted into a cavity for molding. Plastic injected into the mold formed a frame around the entire stack to provide the necessary sealing and spacing requirements, as well as provisions for acid fill.

Electrode quality within each 10-volt stack was poor due to the required part size. Length and width exceeded the working area of the press. Pieces were 0.080" thick and highly resistive (10 Ω -cm). Cross sectioning of one dry, unformed (DUF) stack showed complete plastic fill and no electrode distortion. Confirmation of hermetic cell-to-cell sealing was never

FIGURE 16 Composite Battery Builds

<u>ID</u>	Volts	Adhesion Method	Cycles	Cause of Failure
159	4	Lead dust	32	Lack of paste adhesion
159-B	4	Lead dust	15	Lack of paste adhesion
160	4	Lead dust	15	Lack of paste adhesion
182-1	4	Lead dust	5	PbSO, at surface
182-2	4	Sanded surface	5	Lack of paste adhesion
182-3	4	Lead dust	5	PbSO, at surface
182-4	4	Sanded surface	5	Lack of paste adhesion
194-3A	4	Embedded 0.003" glass mat	0	PbSO, at surface
194-4A	4	Embedded 0.003" glass mat	0	PbSO, at surface
194-3A	4	Finely sanded surface	0	PbSO, at surface
194-4A	4	Finely sanded surface	0	PbSO, at surface
205-1	4	0.001" perforated lead foil	18	Lack of paste adhesion
205-2	4	0.001" perforated lead foil	18	Lack of paste adhesion
205-3	4	0.001" lead foil	19	Lack of paste adhesion
205-4	4	0.001" lead foil	14	Lack of paste adhesion
214-1	4	0.010" lead foil over treated surface	18	Leak, cracked substrate
214-4	4	0.010" lead foil	21	Lead foil delamination
214-5	4	0.010" lead foil	45	One very dry cell
214-5 214-6V	6	0.010" lead foil over treated surface	47	Lead foil delamination
214-0 V 218-1	4	Carbide fibers	2	Too resistive to cycle
218-1	4	Carbide fibers	2	Too resistive to cycle
224-4	4	0.010" lead foil over treated surface	151	Shed PAM, shorting
	4	0.010" lead foil over treated surface	104	Lead foil delamination
224-5	4	Flame sprayed lead	0	High IR, no AM adhesion
241-2	12	0.005" lead foil over treated surface	15	Lead foil delamination
242 242-4	4	Paste over treated surface	0	High IR, no AM adhesion
	6	0.005" lead foil over treated surface	12	Lead foil delamination
243-6V 257	12	0.005" lead foil over treated surface	8	Lead foil delamination
259	12	0.005" lead foil over treated surface	0	Lead foil delamination
259 260-2	4	0.005" lead foil over treated surface	19	Lead foil delamination
	6	0.005" lead foil over treated surface	9	Lead foil delamination
263 265	-	0.005" lead foil over treated surface	4	Crack, leak, delamination
265	6	0.005" lead foil over treated surface	15	Lead foil delamination
267-1C	4 4	0.005" lead foil over treated surface	135	Local lead foil delamination
267-4P	4	0.005" lead foil over treated surface	13	Local lead foil delamination
267-5P		0.005" lead foil over treated surface	33	Local lead foil delamination
267-6VP	6	0.005" lead foil over treated surface	18	
267-6P			20	Local lead foil delamination
267-8C	4 4	0.005" lead foil over treated surface 0.005" lead foil over treated surface	20	Local lead foil delamination Local lead foil delamination
267-9P		0.005" lead foil over treated surface	11	
267-11C	6 6	0.005" lead foil over treated surface	11	Local lead foil delamination Local lead foil delamination
268-6VC	4	0.005" lead foil over treated surface	9	Local lead foil delamination
268-8C	4	0.005" lead foil over treated surface	68	Local lead foil delamination
268-10C		0.005" lead foil over treated surface	135	Local lead foil delamination
268-11C	4		15	
268-12C	12	0.005" lead foil over treated surface 0.005" lead, treated surface, acid dip	2	Lead foil delamination Local lead foil delamination
277-1C	4	•		
277-2C	4	0.005" lead, treated surface, acid dip	4	Local lead foil delamination
277-6VC	6	0.005" lead, treated surface, acid dip	3	Local lead foil delamination
278-1C	4	0.005" lead, treated surface, acid dip	8	Local lead foil delamination
281-1	4	0.005" lead on HDPE, treated surface	6	Local lead foil delamination
282-1	4	0.005" lead on HDPE, sanded, treated surface	23	Lead foil delamination
282-2	4	0.005" lead on HDPE, sanded, treated surface	5	Lead foil delamination
282-6V	6	0.005" lead on HDPE, sanded, treated surface	5	Lead foil delamination
285-1	4	0.005" lead, washed oxide, treated surface	11	Lead foil delamination
286-2	4	0.005" lead, unwashed oxide	0	Short
286-3	4	0.005" lead, unwashed oxide	11	Lead foil delamination
287-2	4	0.005" lead on HDPE, washed, treated surface	1	Cracked substrate
287-3	4	0.005" lead on HDPE, treated surface	10	Lead foil delamination
287-4	4	0.005" lead on HDPE, treated surface	6	Cracked substrate

obtained due to difficulties porting the cells for pressurization tests. The trial did, however, prove that injection molded containment was a viable manufacturing technique.

4.0. METALLIC SUBSTRATE DEVELOPMENT

4.1 WBS 1.0 PROGRAM MANAGEMENT

4.1.1 Subtask 1.1 Managing Strategy

Effective July 28, 1994, Ms. Jennifer Rose assumed the responsibilities of the contract's previous project engineer, Mr. Doug Pierce, due to his departure from JCBGI.

Shortly thereafter, a proposal requesting a no-cost time extension was submitted to the contract negotiator on July 13, 1994. Gantt charts detailing this effort are shown in Figures 17 and 18. This followed a discussion with Mr. Richard Marsh during which it was mutually agreed that, despite significant advances in composite bipolar substrate development, remaining WPAFB contract work should be focussed on the use of a lead substrate with improved corrosion resistance. Through a parallel bipolar program, JCBGI had repeatedly demonstrated 2000+cycles in a 12-volt configuration utilizing lead substrates, and over 5700 cycles using a 6-volt unit. Laminated metallic substrate work had also been underway for nearly 12 months in an effort to increase corrosion resistance, and hence, cycle life.

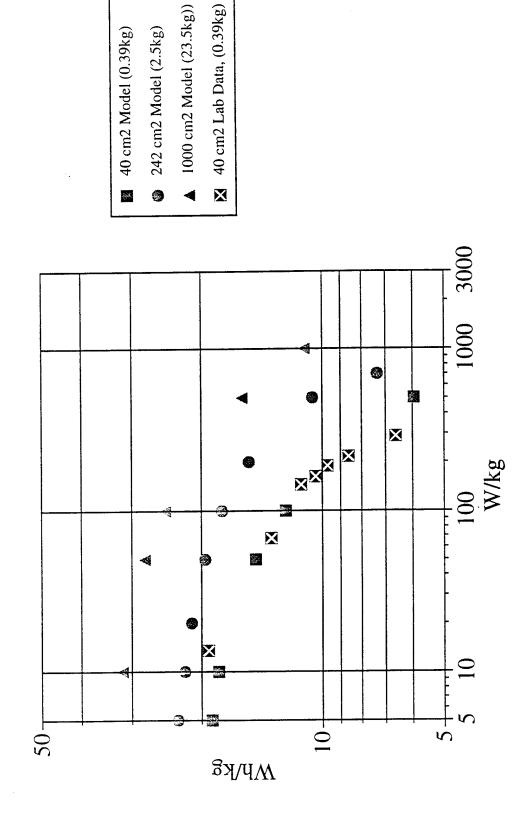
4.2 WBS 2.0 BATTERY DESIGN

4.2.1 Subtask 2.1 Battery System Design Analysis

The existing small metallic bipolar battery design was scaled up and modeled to investigate high power performance. Results suggested the use of a thinner cell design to be critical to achieving rates of 500 W/kg and higher. Per these findings, work was redirected to designing a 24-volt module within the volume previously allotted for 12-volts. This effectively aligned the contract deliverable voltage with WPAFB's ultimate application and JCBGI's commercial product target. Constant power performance projections are shown in Figure 19.

4.3 WBS 3.0 BIPOLAR PLATE

4.3.1 Subtask 3.1 Multialloy Substrate Development


Under separate contract, JCBGI began investigations into laminated metal substrates in November 1993. Corrosion testing of three, four and five layer samples and constituent alloys was performed in a bipolar configuration to assess time to breakthrough. Unpasted samples were mounted in the previously described stability test fixtures (Composite Substrate Work, Subtask 3.3) for three-point testing. Only the positive surface was exposed to electrolyte. Working and reference electrodes were also introduced. Initial testing of a new material was

May June Juny August 24 1 8 15 22 29 5 12 19 20 3 10 17 24 31 7 14 21 28 4 A A A A A A A A A A A A A A A A A A	Coctober November December January February March April May June July August		1994				1995				
210 V dasignal for wing, Will find the final form for the final for the final form for the final for the final form for the final for the final form for the final for the final form for the final for the final form for the final for the final form for the final for the final form for the final form for the final form for the final	10 10 17 24 31 7 14 21 28 5 12 10 28 2 9 16 23 30 6 13 20 27 5 10 17 24 1 9 15 22 9 5 12 13 20 3 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 17 24 1 9 10 27 20 10 10 27 20 10 17 24 1 9 10 27 20 10 10 27 20 10 10 27 20 10 10 27 20 10 10 10 10 10 10 10 10 10 10 10 10 10					April	May	June	July	August	- 1
Transchare for Wing, Will Transchare for Win	Figuretical to Wing Will The Propertion of Wing Will The Propertion of Wing Will The Substitution of Wing Will The Substitution of Wing Will The Substitution of Wing Wing Substitution of Wing Wing Su		2128 5 12 1926	9 162330 6	13 20 27 6	3 10 17	1522	5 12 19 26	10 17 24	7 142128	11 18 25
Level Propertions to Wing, Will in Observation in Notifiers in Notifi	The Separation for Whyp, Will A A A A A A A A A A A A A A A A A A	WBS 1.0 PROGRAM MANAGEMENT						-			
Laboral Functions for Wing, Will A A A A A A A A A A A A A A A A A A	The Particular of Winds, Will A A A A A A A A A A A A A A A A A A	1.1 Managing Strategy			•						
A Modulary We will be provided the provided by the provided service of the provided by the pr	A continue higher in the second of the continue higher in the second in	DPL DOD Electrode-Based Projections for Wikg, Wil			Ì			•			
The Modeling of the Modeling o	The Production of Regions A A A A A A A A A A A A A A A A A A A	DPt: Substrate Pressing Operation									
### ##################################	and appropriate the stage of th	DPt: Sealing/Injection Molding									
### ##################################	and an article of the control of the										:
we pronduce Report art art art art art art art	The state of the proof of the state of the s				-	2					
at the beginning fleport and the suggest of the sug	as tells a 2.00 V designs) st (48 a 2.00 V designs) st (48 a 2.00 V designs) st (48 a and 270V Paper Design) st (49 and 270V Paper Design) st (40 and										
test & 220 V designs) res & 4 to 8 20 V designs) res & 4 to 8 to	residency beyond reside a 2 roy V designal) reside and 2 roy Paper Designal) residency to the second and a roy of the second and are second and a roy of the second and are second and			•	-	•	<u> </u>	\	•	-	
se (48 & 270 V designs) for stand 270 V paper Design) on (19 and 270 V paper Design) on (19 design previous work) van (1	s (d & 270 V dasigns) See A figure 1 See A f	Funds & Manhour Expenditure Report	4	•		1	1	i <		•	
s (48 & 270 V dosigns) The start of the sta	res 4 8 270 V dissigns) In the port of dissigns) In the port of dissigns) In the and 270V Paper Design) In (a and 270V Pap	Project Planning Chart	4	1<		1≪	l∢	! <	· •	[◀	
Report See Report The Chycles of Page Design) The Chycles of Page Design of Page Desi	Report See and 270V Paper Design) The floating periods worth) For cases (Embossing) For cases (For cases (Embossing) For cases (For cases (Embossing)) For cases (Embossing)	R & D Status Heport	1	< 1		ł	<u> </u>				
Insperii Sin Georgia Design) Sin Georgia Design (Update previous work) Sin Georgia Design (Update previous work) Sin Georgia Design (Update Design) Sin Georg	Terport Ter	Toet Plane/Procedures		V							
or Report To (48 and 220V Paper Design) To (48 and 220V Paper Design) To (10 Gatte previous wark) The cases of Embossing) The cases of Embossing) To (20 EMP Control Con	pn (de and 270V Paper Design) ng (Update previous work) regleto Phenium ng (Update previous work) regleto Phenium ng (Update previous work) regleto Phenium ng (Sami Sacial) regleto Phenium ng (Nami Sacial) regleto Phenium regleto	Safety Assessment Report		•							
go (48 and 270V Paper Design) The Constraints of the previous work) EVELOPMENT Multi-Muly Substrated) A D ED D Not leastlife with 0.0012 FE ENT DEVELOPMENT THOUSE CENTRAL Scale) Sing (Small Scale) Sing (Small Scale) And to Plastic Interface Scale) FE ENT DEVELOPMENT TO DEVE	go (46 and 270V Paper Design) The Complex of the C	Contract Funds Status Report		٥		◁		-	◁		
grid de and 270V Paper Design) ray (Update previous work) ray (Update previous work) reconstruction of the previous of th	The Cutton Variety Design) The Cutton Variety Design) The Cutton Variety Design State Seal The Cutton Variety Seal The Cutton Variety Design State Seal The Cutton Variety Seal The Cutton State Seal The Cutton State Seal The Cutton State Seal Seal The Cutton State Seal Seal The Cutton State Seal Seal Seal Seal Seal Seal Seal Sea	Final Report								4	
gn (48 and 270V Paper Design) ng (Updain previous work) revELOPMENT (Multi Multi Substitute) A processors (Embossing) arrossion Tosing) sting (Small Scale) ENT DEVELOPMENT rent (No Activity) and to Plastic Interface Seal) st (Curront, Vaccuum, Compression) RPE ERONONSTHATION (Daliverables)	gon (48 and 270V Paper Design) and (19 date previous work) RevELOPMENT An Elecassas (Embossing) arrestsas (Emb	WBS 2.0 BATTERY DESIGN	-						:		
(g) Ompression)	Ompression) [A) Rolling work discontinued due to inconsistent itb height. Toxas instruments and Vacco Industries brought on board. [B) Chatter encountered during 11 class and the procession of the procession	2.1 Battery System Design (48 and 270V Paper Design)	The state of the s								
99) Montression) Ompression)	Seal) Ompression) (A) Rolling work disconlinued due to inconsistent rib height. Toxas Instruments and Vacco Industries brought on board. (C) Toxinial Jaminatia Accidate Initial Studies of Initial Studie	2.2 Performance Modelling (Update previous work)	The state of the s	-							:
99) Seel) Ompression)	Seal) Ompression) (A) Rolling work discontinued due to inconsistent rib height. Toxas instruments and Vacco Industries brought on board. (B) Chatter encouvaled during it clining in the Standard protect. Lead on copper reminals ordered from another vendor.	WBS 3.0 BIPOLAR PLATE DEVELOPMENT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Ę	
(9) Seal) Ompression)	Seal) ompression) (2) (3) (4) (A) Rolling work discontinued due to inconsistent tib height. Taxas Instruments and Vacco industries brought on board. (b) Chalter encounted during Tolling tills. Standing materials took on copper terminals ordered from enother vendor.	3.1 Conductive Fillers (Multi-Alloy Substrate)					9	3		9	
Seal) ompression)	Ompression) Ompression) (A) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on beard. (B) Chatter environment accelulation of lime. Stud solder loint strength strength screening.	3.2 Substrate Fabrication Processes (Embossing)			Not te	₹		-			
Seal) ompression)	Seal) ompression) (2) (2) (3) (4) (b) Rolling work discontinued due to inconsistent rib height. Taxas instruments and Vacco Industries brought on board. (b) Catter encounted duing materials too thick. Lead on copper terminals ordered from another vendor. (c) Tarented annihale accelered on time. Stud solder joint strength exceeds StIl specification.	3.3 Stability Tosting (Corrosion Testing)			7						
Seal) Ompression)	Ompression) Ompression) (A) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on board. (B) Challette encounteed during IT of inconsistent rib height. Texas instruments and vacco industries brought on board. (C) Terminal particular procedured on time Studing	3.4 Proof of Concept Testing (Small Scalo)	A Company of the Comp	3				1	-	:	<u>.</u>
Seal) ompression)	Ompression) Ompression) (A) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on board. (B) Challete encounteed during 17 rolling tital. Starting materials too thick. Lead on copper terminals ordered from another vendor.	WBS 4.0 BATTERY COMPONENT DEVELOPMENT									
Seal) Ompression)	Ompression) Ompression) (A) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on board. (B) Challete encounteed during IT of inconsistent rib height. Texas instruments and vacco industries brought on board. (C) Terminal laminate received on time Stud solder joint strendth exceeds StL specification.	4.1 Separator Development (No Activity)									
Seal) onpression) Figure 1	Seal) Ompression) (2) (2) (3) (4) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on board. (5) Rolling work discontinued due to inconsistent rib height. Texas instruments and vacco industries brought on board. (6) Texaninal particular proceduring Transmitted on thick. Lead on copper terminals ordered from another vendor.	4.2 Active Material Development									
Ompression) Ompression)	Ompression) (A) Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco industries brought on board. (B) Challete encounteed during Train Starting materials too thick. Lead on copper terminals ordered from another vendor.	The Continue Mathed at Local to District Interface South	Commence of the state of the st								
	[A] Rolling work discontinued due to inconsistent rib height. Texas instruments and Vecco industries brought on board. [B] Chatter encountered during TI controlling titler. Starting materials to thick. Lead on copper terminals ordered from another vendor. [C] Terminal particular procedured on time. Stud solder joint strendth exceeds SLI specification.	5.2 Formation Processes (Current, Vacuum, Compression)	The second secon			I					
	A Rolling work discontinued due to inconsistent rib height. Texas instruments and Vacco Industries brought on board. B Chalter encountered during TI rolling triel. Starting materials too thick. Lead on copper terminals ordered from another vendor. C Terminal aminate problemed on time. Stud solder joint strength specification.	WBS 6.0 BMET POWER SOURCE DEMONSTRATION									
6.2 Tosling (Group 34 size)	Rolling work discontinued due to inconsistent rib height. Taxas instrument B Chatter encountered during T1 rolling trial. Starting materials too thick. ICT Terminal laminate arealved on time. Stud solder joint strength sexceeds.	6.1 Battery Fabrication (Deliverables)				Ц				=	₹
	Rolling work discontinued due to inconsistent rib height. Taxas Instrumen Chatter encountered during T1 rolling trial. Starting materials too thick. Torninal translate carelyad on time. Stud solder joint strength seconds	6.2 Tosting (Group 34 size)						1			
0.032* thick, 4-tayer laminate produced by TI. Too thick. Vacco examining elec Chatter eliminated, but an acking now a problem.			24-volt stacks	trodes short in form	mation.		adeap social				
0.032' thick, 4-tayer taminate produced by TI. Too thick. Vacco examining electrowinning to reduce \$58/pc etching cost. Chatter eliminated, but nacking now a problem. Pressure sensitive achesive reprocessed and applied to surface treated frames. Stacks successfully pressurized. 24-volt stacks of frames and electrodes short in formation.	24-volt stacks of frames and electrodes short in formation.		Work to deliver Two 48-volt batt	olded balteries dist WPAFB.	conlinued in ravor of D	ackup gaskeleu con	מווופו תפפולווי				
0.032" thick, 4-layer faminate produced by TI. Too thick. Chatter eliminated, but necking new a problem. Pressure sensitive achesive reprocessed and applied to sur 24-voit stacks of frames and electrodes short in formation. Work to deliver 24-voit injection molded batteries disconlinitive 48-voit batteries delivered to WPAFB.	Tressule settinive authorises and electrodes short in formation. Work to deliver 24-voit injection molded batteries discontinued in favor of backup gasketed container design. Two 48-voit batteries delivered to WPAFB.										
0.032* thick, 4-tayer faminate produced by TI. Too thick. Vacco examining electrowinning to reduce \$58/pc etching cost. Chatter eliminated, but necking now a problem. Persource sensitive adhesive reprocessed and applied to surface treated frames. Stacks successfully pressurized. Persource of frames and electrodes short in formation. Work to deliver 24-volt injection molded batteries discontinued in favor of backup gasketed container design. Two 48-volt batteries delivered to WPAFB.	Transition settlings and electrodes short in formation. Work to deliver 24-volt injection molded batteries discontinued in favor of backup gasketed container design. Two 48-volt batteries delivered to WPAFB.				-			_	-		

FIGURE 18: WPAFB Bipolar Deliverable Schedule

	March	April	May	June	July	August	September
	3 10 17 24 31	7 142128	5 12 19 26 2	2 9 16 23 30	7 142128	4 11 18 25	1 8 15 22 29
Initial mold tooling	27. 36.2 K 187 7 34.7 K 187.44	Variation of the second					
Container mold tooling						1	
Machine copper terminal studs	AND AND A		· · · · · · · · · · · · · · · · · · ·		CONTRACTOR	3	
Lead alloy substrate delivered							
Achieve seal between lead and frame		ψ			2000	2.4	
Clad terminal electrodes delivered					and the same of th		
Investigate porous copper connectors						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Prep electrodes					a promotion of the contract of	NELL (NO. 1)	At Viva District
Paste, cure, dry and QC electrodes					COLLEGE AND COLLEGE AND A STATE OF THE STATE		TO THE RESIDENCE OF THE PROPERTY OF THE PROPER
Container mold trials					papagas papagas sa s		
Gate changes to equalize pressure				V	A C MARCHA CANADA CANAD	Acquire and a contract of the	A AND THE STATE OF
Strengthen frames with glass			or the control of the			COLUMN COMMON CO	The second secon
Correctly process adhesive							
Thermally fuse stack perimeter		200	and the state of t		***************************************		
Commit to backup gasketed design		3000	The state of the s		THE PROPERTY OF THE PROPERTY O	4	A COST MAN TO CONTROL OF A LOCATION OF THE PARTY.
Paste additional electrodes for 48V					The state of the s	4	
Machine parts for gasketed container			and the second s		STANDON ANDRONE PROBLEM TO THE PARTY OF		
Construct ABS containers	***************************************	22 00 00 00 00 00 00 00 00 00 00 00 00 0	DOLLOS CONTRACTOR CONT	The second secon	mano manara vienno enerono		
_							
Form and cycle		1	DO DODGE STATE OF STA		ACCOMPANIES COMPANIES COMP		
Attach covers with vents	on on the state of		CHA CHE WE TO COMMONDE OF CHEST OF CHEST		AND THE CONTROL OF TH		\ \frac{1}{1}
Deliver (2) 48V systems			THE CONTRACTOR OF THE CONTRACT				۵
	A COURT OF THE PARTY OF THE PAR		des de la companya de	and the second s	***************************************	THE REAL PROPERTY OF THE PROPE	
				1,2,7,7,7			***************************************
the manufacture and the control of t							

FIGURE 19 Constant Power Performance Projections Metallic Bipolar Substrate

performed at 70°C and a constant potential of 1.50 V until evidence of pinholes was noted, i.e., liquid in the back chamber or spikes on the current acceptance curve. Replicate samples were then run, pulled at points prior to breakthrough, and submitted for cross sectional photomicrographs to quantify the corrosion rate.

Comparing rates of all samples tested showed the corrosion resistance of laminates to be second only to that of a high silver content alloy. Batteries utilizing the clad material were assembled and tested, but performance was poor. Teardowns showed improper cleaning of the starting materials to have prevented bonding of the dissimilar metals at the molecular level. Delamination resulted in high internal resistance that impeded high rate performance.

In October 1994, assistance was sought from Texas Instruments' Cladding Division (TICD), a leader in the laminating industry. Partnership activities were slow to materialize due to reorganization within TICD, however, two- and three-layer trials cladding lead to a stainless steel core were successful in December 1994. In March 1995, lead clad copper material was received and forwarded to Vacco Industries (see Metallic Substrate Work, Subtask 3.2) for surface etching trials. TI had planned bonding and rolling to facilitate a 65% reduction of the 0.054" thick constituent layers, however, a maximum of 51% was achieved before "chattering" (rippling) was observed. Secondary rolling ruined the bonds achieved in the first pass. New starting materials were requested for the production of 0.013" thick material, but the May delivery date made it unlikely that the laminated material would be available for use as the bipolar substrate in the required deliverables. Four layered, 0.032" thick sample material was received in June, and required reducing the copper core thickness by 50%. The likelihood of having the concept ready for deliverable use then dismissed.

4.3.2 Subtask 3.2 Rolling/Embossing Work

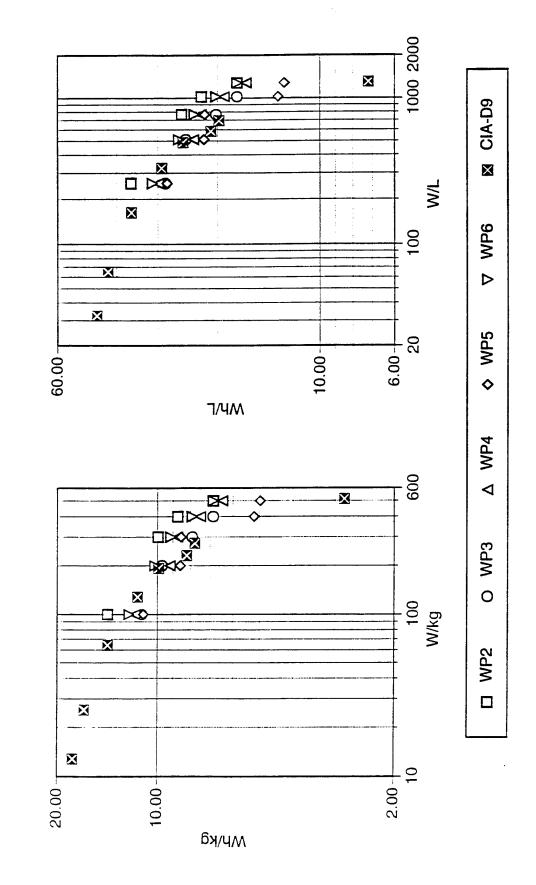
Fostering paste adhesion to metal sheet requires the surface to be roughened in some manner. Small-scale metallic substrates possessed exemplary adhesion when hot pressed in a mold to create ribs protruding from each face. The raised pattern successfully broke up the "single paste pellet" that would otherwise sheet off the lead substrate during handling, and increased the surface area biting into the active material.

Substrate production times were slow and scale up required the use of more tonnage than available on any in-house press. It also lacked promise as a high speed, manufacturing process. A roller die was ordered and five hundred pounds of 0.020", 0.025" and 0.030" thick lead were delivered to MP Metal Products for rolling trials. Without authorization, MP turned to blanking the electrodes from a compression die when the first rolling trial was unsuccessful. Rolled

samples were never provided to JCBGI for evaluation. When informed of the new production direction, JCBGI reiterated their interest in the rolled concept, but conceded to whatever parts could be produced. Time was short. MP continued their effort to produce parts, but quickly found their press tonnage insufficient. Hence, a new vendor was located. Walking 300 tons force across the die produced acceptable parts from 0.020" thick starting material. Efforts to reduce the substrate thickness to the required 0.012" thickness were unsuccessful and the embossing effort abandoned.

Photochemical etching was investigated in conjunction with laminating activities (Metallic Development Work: Subtask 3.3.1). Early trials produced copper pieces that were electroplated with lead, pasted and shown to possess good adhesion. Solid lead sheet was not etched as easily, requiring strong chemicals that made the technique cost prohibitive (\$58/piece).

As backup, plastic screen was used. Pieces were cut to the size of the active material area, pressed to eliminate elevated nodes that could cause shorting through the separator, and were tacked to the lead substrate. This alternative eliminated roughly 240 grams of lead rib mass per battery, but required significantly more labor input than the embossing concept. Despite its facilitating acceptable results, the use of plastic screen is not recommended for manufacturing.


4.3.3 Subtask 3.3 Substrate Corrosion Testing

Laminates received from Texas Instruments were never corrosion tested due to their being too thick.

4.3.4 Subtask 3.4 Small Scale Characterization

Bipolar batteries having 0.012" thick substrates and 0.030" thick pasted layers were assembled, formed and tested in January 1995. Constant power discharge performance plots normalized to battery mass and volume are shown in Figure 20. Performance by WP2 and WP6 represented the best of the lot and greatly exceeded that reported for batteries delivered under the parallel metallic bipolar development contract. This was attributed to the use of 1.265 sg fill/form electrolyte. Reproducibility was an issue and investigated. Teardowns showed sulfated positives and dull negatives. Cured paste analyses reported consistently high levels of free lead that could cause initially poor or rapidly declining performance. A review of pasting procedures showed the starting PbO to be within specification and the paste code to be adequately sulfated

Constant Power Performance Normalized to Mass and Volume FIGURE 20

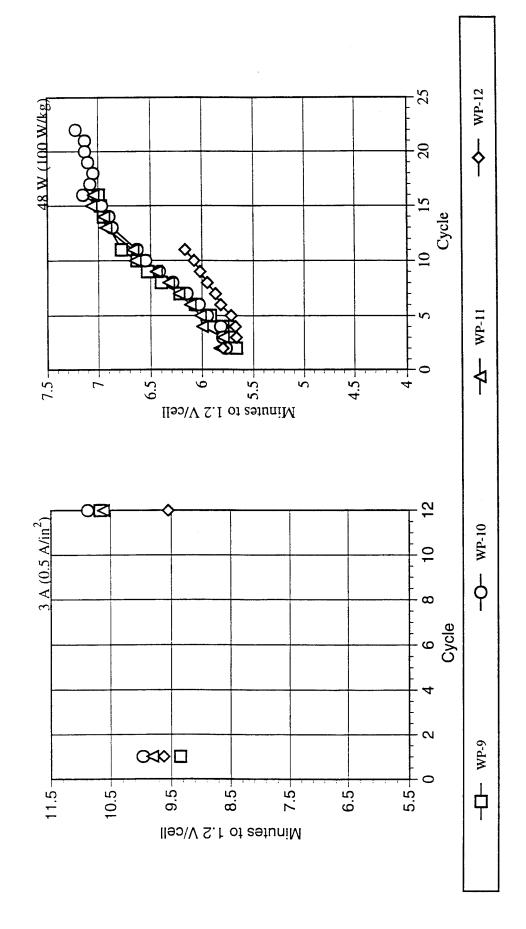
and consistent from mix to mix. The dry bulb within the curing chamber was found cracked and was repaired prior to further assembly operations.

Testing of four newly-formed 12-volt units showed 10-15 cycles at 100 W/kg to be necessary to reach full capacity. Discharge times were tightly grouped after formation (Figure 21). WP-12 lagged due to oxygen ingress at cycle 3. A cursory investigation of constant current rates (Figure 22) was performed to give insight into the constant power rates required per the test plan. Constant power performance was plotted along with the modeling prediction in Figure 23, then translated into the time versus power curve shown in Figure 24.

4.4 WBS 4.0 BATTERY COMPONENTS

4.4.1 Subtask 4.2 Active Material Development

Procedures and equipment were reviewed when the free lead content in positive and negative cured plates was reported at 5.5 and 10%, respectively - far above the 4% maximum. Increasing the curing residence time from 16 to 40 hours had little effect. Moisture content was found low (6-7%) as referenced to industry and company standards and, subsequently, paste code and plate handling techniques were reviewed. Efforts to keep plates moist while awaiting transport to the curing chamber only slowed the cure reactions and actually increased the cured free lead content. Lastly, the ABR humidity chamber was diagnosed with a cracked dry bulb, repaired and reset. Cured positive and negative plates from eight subsequent pasting runs displayed acceptable free lead content following a 24 hour residence time in the environmental chamber.


A limited investigation into the effects of freezing and thawing a small 12-volt battery was performed. One unit was tested at room temperature to establish a baseline capacity and then chilled to -60°C. A 5-hour thaw was allowed and the discharge test repeated. Evidence of cell reversal and a 13% capacity loss was documented. Confirmatory work was placed on hold to allow pasting, stacking and debugging of the formation techniques proposed for full-size, 24-volt units.

4.5 WBS 5.0 BATTERY FABRICATION

4.5.1 Subtask 5.1 Sealing Methods

A variety of compounds was evaluated for use in achieving a hermetic cell-to-cell seal. In the end, an engineering sample of hot melt adhesive was pressed between release paper into

FIGURE 21 Small Scale Characterization Capacity Development, 24 deg C

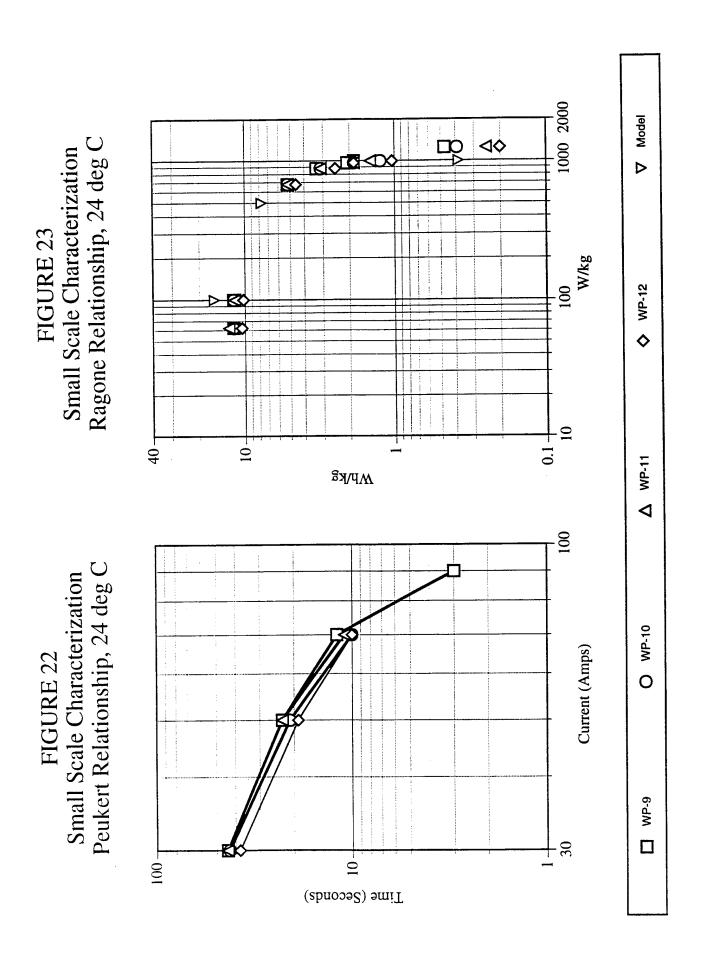
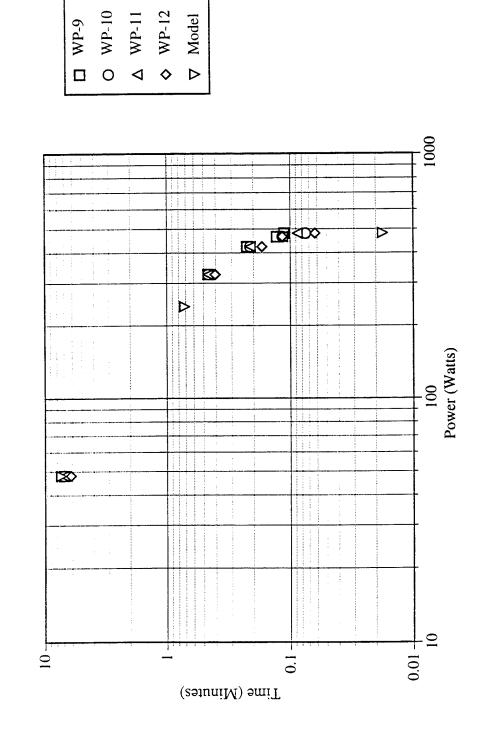



FIGURE 24
Small Scale Characterization
Discharge Time vs Power, 24 deg C

sheet, chilled, slit into ribbon, chilled again, and finally laid onto treated plastic spacer frames. Dummy stacks were leak-free to 4 psig, and successfully completed 4 hours of intermittent vacuum pulsing to simulate the fill and form procedure. Cells in 12- and 24-volt stacks were also leak-free when similarly tested.

Sufficient quantities of the engineering sample material resided in-house, but efforts to find a replacement adhesive were initiated when additional material could no longer be obtained. Chemical analyses and physical testing of the original material was requested of H.B. Fuller and resulted in their furnishing two candidate replacement materials. Stack assembly showed one sample to be tackier and both materials able to withstand the level of vacuum required for filling. No further work with these substitutes was carried out since sufficient adhesive existed to complete the contract.

4.5.2 Subtask 5.2 Formation

Two 24-volt batteries were stacked for formation studies. Each was comprised of 13 electrodes, 12 spacer frames, and two copper termination plates bolted between polycarbonate endwalls and outfitted with polycarbonate filling manifolds across each set of top slots.

Air pressurization of the first stack prior to filling showed one of the two fill ports to be leaking. The manifold was removed and the slots closed off after repeated attempts to seal the manifold were unsuccessful. Seventy-five minutes were required to input 300 cc of chilled electrolyte through the remaining manifold. This represented roughly 72% of the available void volume in the stack. Complete (100%) saturation had been targeted, however, small leaks developed around the base of the manifold, decreasing the fill efficiency. Current was applied for 120 minutes when evidence of shorting was apparent. Disassembly showed the majority of cells to have dendritic shorting through the center area of the separator. Failure was attributed to the long fill time (10-15 minutes was targeted to minimize the dissolution and diffusion of lead into the separator) and out-of-spec plate thicknesses. On average, plates were 0.007" over the 0.025" target, resulting in a compressed separator allowance of 0.016". Roughly 0.020" was considered the minimum separator thickness. Paste weights were reduced for the subsequent build.

The second 24-volt battery was assembled into a bolted polycarbonate fixture, filled to 84% saturation with chilled electrolyte, and placed on formation. Further filling risked lead dissolution and dendrite formation in the separator due to the excessive time required. Five cells shorted during formation as a result of a common electrolyte path along the lead exposed within the fill channel. Further formation attempts were placed on hold pending receipt of a molded stack which, by design, better guarded against common electrolyte paths in the fill port area.

4.6 WBS 6.0 BMET DEMONSTRATION

4.6.1 Subtask 6.1 Deliverables

Injection molded containment about metallic substrates was aggressively pursued for the majority of the No-Cost Time Extension. Repeated trials ultimately succeeded in correcting recurrent frame and electrode distortion, however, hermetic cell-to-cell seals were not obtained. Stacks were never available for formation or for trials to attach covers via induction welding. As a result, a backup battery design was implemented to complete the contract's deliverable requirements.

The following section describes the injection molded containment work in more detail, along with the proposed venting and intermodule connector concepts. The subtask is then concluded with a description of the batteries delivered to WPAFB.

4.6.1.2 24-Volt Injection Molded Containment

The use of the injection molded containment concept previously tested with composite electrodes required one design modification to facilitate use with metallic substrates. To prevent distortion of the 0.012" thick metal electrode, the outer edge of the spacer frame was reshaped to wrap around the lead sheet and afford protection against the injection pressure. Glass filler was also added to the spacer resin to promote a melt bond with the outer endwalls. Molded spacers showed that shrinkage of the 0.082" thick parts was less than anticipated (0.003 in/in vs. 0.007 in/in). This was due to the ASTM shrinkage rate reporting basis (0.125"x0.5"x6" sample). As a result, spacers were slightly larger than specified, however, down-the-line assembly problems were not encountered.

The endwall material was also reevaluated and three candidates tested for use in maintaining the compressed stack dimension. Single layers of honeycombed aluminum sheet stock failed deflection testing. Bulk molding compound manufactured by Luvdahl provided the needed strength against a 6 psig load but was incompatible with battery acid. Glass-filled polypropylene was ultimately used after measuring a deflection of 0.013" at 5 psig.

Severely warped endwalls were produced during the first mold trial. Mold gate changes reduced the distortion, but a subsequent heat soak was still necessary to produce a flat part. Limited success was had in adding a blowing agent. Topical sinks located around the outer perimeter and the center termination port were greatly reduced but not eliminated. Slight part warpage also remained. Cross sectioning showed the internal pore size (caused by the blowing agent) to be very small. It also showed a 4-hour heat treatment to cure the warpage with no sign

of reactivating the blowing agent, but at the expense of the recessed terminal electrode cavity dimension. Heat treating was abandoned when measurements showed shrinkage along the length and width centerlines to be so great as to make it impossible to insert the terminal electrode in the recessed cavity.

Endwalls and spacers were then assembled with lead sheet to create dummy stacks for mold trials. Early attempts showed the plastic to distort the 10% glass frames inward toward the pasted portion of the stack, leaving insufficient material to fill the outer frame. Gate modifications were implemented in an effort to equalize the injection pressures at various points within the container mold. Center/side gating achieved complete mold fill and eliminated much of the frame distortion, however, cross-sectioning still showed buckled lead and uneven plastic distribution. The mold clamp location was then widened and additional glass added to the spacer resin for strength.

Strengthened plastic battery components were received and set up parts prepared for a trial in mid-July, 1995. Glass loading in the frame was increased to 30% in order to prevent blowing in and lead distortion, and to reduce part compression when clamped within the mold. The molding trial was nearly successful. Complete mold fill was achieved with slight crowning of the frames. A "clamp only" trial showed the crowning to be a result of the mold closing. Still closer examination revealed the stacks loaded into the mold to be ~0.100" too thick as a result of out-of-spec adhesive. The remaining thick stacks were preheated and easily compressed to the correct 1.454" thick dimension. Disassembly showed no electrode distortion. Laboratory measurements of stacks assembled using 0.003" thick adhesive (a 50% reduction) were similarly flat.

The subsequent molding trial with correctly processed adhesive produced four dummy stacks and one DUF battery for analysis. Electrodes in all four dummy stacks were distorted along the inner frame perimeter. Heat sensitive indicators inserted at two points in each stack recorded the temperature history and showed no indication of having reached the temperature at which the inlaid adhesive would begin to flow.

The distortion was subsequently eliminated in late July by thermally fusing the outer edges of the stack to better resist the high molding pressure. Pressure testing to confirm cell-to-cell seals identified leakage that was traced to the area surrounding the fill channels. Close examination showed a lack of melt bond between the prefused frame and injected containment plastic. Given the cost and time associated with the mold change proposed to eliminate the leakage, the concept was abandoned for use with WPAFB deliverables.

Venting considerations were evaluated concurrently to stack molding. Implementation of a totally sealed design was initially considered, but dismissed. Utilizing a fail-safe panel along

the face representing the endwall would have reduced its functionality as a means of maintaining adequate battery compression. User safety in the event of an abusive overcharge was an even greater concern.

A review of available off-the-shelf vents quickly showed that no battery vent supplier had ever addressed the main issue facing bipolar technology: cell width. Vent designs just 0.060" to 0.080" in width did not exist. Staggering the vents was proposed, but eliminated from further consideration when it became apparent that multiple frame molds would be required.

Having limited data showing success in cycling a small bipolar battery utilizing single point venting, the deliverable venting configuration was drawn. In its final form, a 24-volt battery was to be fitted with a vent over each of the fill slot locations. This duplicity provided a backup venting location to any cell that might incur blockage in one of its ports. Oil applied topically aided in achieving and maintaining the hermetic seal required for recombinant, maintenance-free operation.

Two methods were suggested for attaching the vent/cover to the injection molded battery housing: heat sealing and induction welding.

Heat sealing is used throughout the battery industry. Generally, this involves heating the edges to be joined, bringing them into contact, and allowing them to cool under pressure. Concern was raised over being able to hold the 0.080" thick cover while preheating it with a heat lamp. That and the estimated \$30,000 to build a suitable machine to try the concept made heat sealing a last choice technique.

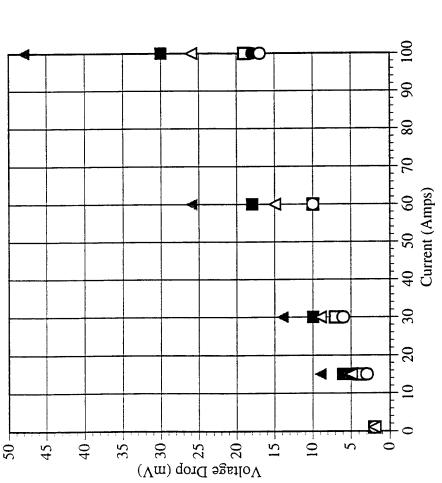
Induction welding was then investigated. This process was reportedly fast and versatile. Heat induced by a high frequency electrodynamic field in a metallic insert placed at the joint brings the surrounding material to the melt temperature. Pressure maintained as the field is turned off maintains the joint as it solidifies. Welding occurs only in the area immediately adjacent to the metallic insert. As a result, weld strength depends on the size and geometry of the metal insert.

The process was also feasible economically. Purchasing a new laboratory unit required \$10,000. Leasing was also possible at \$750 per month.

Initial induction welded samples prepared by Pillar Industries indicated that a hermetic bond could be easily achieved around the periphery of the vent/cover. A semicircular cavity rimming the upper edge of the battery and the two cross bars spanning the center portion of the upper surface was included in the mold design. Later testing proved that a hermetic bond along the cross bars would not be achieved. Mold changes were ordered to reduce the cross bar height to make them serve only as structural supports. Hermetic seals at these points were not necessary given the remainder of the cover weld met specification. Test welds with stacks and covers were never attempted given the difficulties previously described.

Lastly, NCTE work was performed to efficiently connect two 24-volt units in series to form a higher voltage subassembly. Various porous copper samples were obtained and tested under load. Results showed the porous copper to be less resistive than solid copper sheet wrapped around a foam pad (Figure 25). Twenty pieces of 60 pores per inch (ppi) material were ordered and received on time, but never used in deliverables. The batteries delivered utilized a backup containment design that facilitated direct assembly of higher voltage stacks.

4.6.1.3 Gasketed Containment


Given the difficulties encountered in achieving hermetic cell-to-cell seals with the injection molded containment concept, WPAFB accepted deliverable batteries assembled using neoprene spacers and machined ABS container components (Appendix B).

Bipolar electrode substrates were die cut from 0.012" thick tin-lead sheet and pasted following the attachment of plastic screen (see Metallic Substrate Development, Subtask 3.3.2). Three paste runs succeeded in pinpointing the wet paste weight needed to achieve the targeted 0.062" electrode thickness. After curing and drying, plates were individually cleaned, weighed, and checked for high spots (thickness). Paste mass and thicknesses of bipolar electrodes used in the deliverable candidates were put at 105.7 ± 2.5 grams and 0.059 ± 0.001 ", respectively.

Terminal electrodes were die cut from laminated sheet stock comprised of 0.008" thick lead and 0.014" thick copper. This design permitted copper terminations to be soldered to the copper face of the electrode with minimal risk of burning a pinhole through the lead face. Each 0.75" long x 0.75" OD stud with a tapped thread was correctly located by first soldering it to an oversized electrode that was then die-cut to achieve the required dead-center location. (This procedure had been critical to injection mold trials since the stack position in the mold was based on the stud location.) Stud welds were shown to withstand an average of 285 in-lb of torque before failing at the solder-to-laminate joint. This compared favorably to the 180 in-lb SLI specification.

Container components were machined from 0.125" and 0.250" (nominal) thick ABS. Solvent bonding was implemented to join the pieces. Endwalls were provided the necessary strength by encapsulating multiple sheets of honeycombed aluminum within a protective ABS cavity. Electrodes were sequentially placed onto neoprene gaskets and absorptive glass mat positioned over the active area to prevent shorting. Separator material was sized to overlap the active area slightly. Starting thickness facilitated the 25% compression deemed critical to supporting high rates of discharge. Fittings were located in channels milled into each gasket to create ports for filling and venting.

Voltage Drop Across Intermodule Connector Candidate Materials FIGURE 25

Fill and formation were attempted only after confirming each and every cell in a stack to be leak free. Filling was accomplished by evacuating the cells through a column of chilled electrolyte. Returning the system above the electrolyte to atmospheric pressure forced the predetermined volume of acid into each cell quickly and efficiently. Internal stack temperature was monitored constantly and used in controlling the formation current. Current was applied as soon as the fill was completed to minimize the risk of dendritic shorting due to lead dissolution.

Fittings were removed and the cover/vent assembly solvent bonded into place after limited qualification cycling was performed to fully develop the capacity. Details regarding the assembly, formation, and qualification testing of each deliverable are included in Appendix B.

To assist WPAFB in preparing for receipt of these units, three bound copies of safety instructions and operating recommendations were mailed February 29, 1996. One 24-volt and two 12-volt nominal batteries were hand delivered to Wright Laboratory on March 6, 1996 with an additional two copies of the instructions and recommendations. Identification and safety labels were attached to each battery to warn of the potential for explosion, acid burns and electrical shock.

APPENDIX A

RESISTIVITY TESTING

ι		2
٠	=	i
	4	
í	_	
ı		
(7	2
1	1	į
i		
ı		
•		
•	•	
1	-	
i		•
1	3	2
9		-
	۰	•
4	,	۰
1	_	4
ı	1	r
ľ	۲.	١

PERCENT CHANGE	(%)			222222	0000010.00				7.415184					1696.53351				5273.26123					138.119658				924			1	38.0646797			0	70.763192			2063 76933	2000:1000
RESISTIVITY (OHM-CM)	AFTER	8.999	9000	9.930	8.311	9.843	14.764	7.283	10.630		123.825	111.125	237.470	157.474	1232.138	1173.812	1370,662	1258.870		4.331	4.754	4.626	4.570	22.703	30.840	47.244	33.596	0.735	0.802	0.757	0.765	0.928	0.769	0.942	0.880	48.260	111.760	78.740	100.001
THICKNESS (INCH)	AFTER	0.042	0.042	0.042		0.040	0.040	0.040			0.062	0.062	0.063		0.054	0.054	0.054			0.040	0.040	0.040		0.030	0.030	0.030		0.209	0.211	0.208		0.210	0.210	0.209		0.031	0.031	0.032	
RESISTANCE (OHM)	AFTER	0.960	0.640	1.060		1.000	1.500	0.740			19.500	17.500	38.000		169 000	163.000	188 000	200		0.440	0.483	0.470		1 730	2,350	3.600		0.390	0.430	0.400		0.495	0.410	0.500		3.800	8.800	6.400	
RESISTIVITY (OHM-CM)	BEFORE	6.248	7.382	4.622	6.084	9.921	9.350	10.417	908 0	9	8.765				00 400	23.420				1.919				3 281				0.564	0.568	0.530	0.554	0.521	0.502	0.523	0.515	5.334	3.076	2.625	3.678
THICKNESS (INCH)	BEFORE	0.023	0.024	0.023		0.025	0.024	0.024			0.053				1000	0.001				0.040				080	9			0.206	0.208	0.208		0.208	0.208	0.207		0.031	0.032	0.033	
RESISTANCE (OHM)	BEFORE	0.365	0.450	0.270		0.630	0.570	0.635			1.180				000	3.630				0.195)) ; ;			0.36.0	0.53			0.295	0.300	0.280		0.275	0.265	0.275		0.420	0.250	0.220	
MATERIAL	COMPOSITION	LAMINATED 85% GC23N	W/O CA	15% MICROTHENE	4.5 M.I.	I AMINATED 85% GC23N	WITH CA	15% MICHOTHENE		4.5 M.L. C-PLASTIC	I AMINATED 84% GC23N	& 16%PTFF TO	C.PI ASTIC & Ph FOIL	SINGLE APPLICATION	OF RESIN	LAMINATED 84% GC23N	& 16%PIFE 10	C-PLASIIC & PB FUIL	DOUBLE APPLICATION	LAMINBATED 85% GC23N-1	15% MICHOTHENE	4 5 M L	WITH Pb FOIL	C MCCOO Varo CITTAINING	LAMINALED 83% GCZSIV-Z	4 5 M I	W/O pb FOIL	I AMINATED	THICK/THICK	GC23N-1 /C-PLASTIC		LAMINATED	NIHLVIHL	GC23N-2 /C-PLASTIC		LAMINATED	THICK/THIN	GC23N-3 /C-PLASTIC	
TECT	DATE	4/2/92				479700	76/2/4				4/9/92	3000				4/9/92				4/14/00	76/11/10				4/14/92			60/4614				4/24/92				4/24/92			
L C	NUMBER	47A				¥ 0.7	48A				6.3	20				53					04B				25B			7 + 7	<u>c</u>			72A	İ			73A			

PERCENT	CHANGE	(%)				1079.12921				15.9055035		_		780.246688		-											66.666667	3035.13514	203.001224		044 500460	204056.110	556,716418		3976.65505	2921.77858	
RESISTIVITY	(OHM-CM)	AFTER	52.904	60.845	67.667	60.472	1.839	1.664	1.024	1.509	7.402	8.192	7.362	7.652													4.987	76.115	9.280			31.667	19.685		201.652	139.867	
THICKNESS	(INCH)	AFTER	0.032	0.033	0.032		0.122	0.123	0.123		0.125	0.124	0.123														0.03	0.03	0.028			0.046	0.044		0.041	0.038	
RESISTANCE	(OHM)	AFTER	4.300	5.100	5.500		0.570	0.520	0.320		2.350	2.580	2.300														0.38	5.8	99.0			3.7	2.2		21	13.5	
RESISTIVITY	(OHM-CM)	BEFORE	4.675	5.249	5.461	5.129	1.139	1.872	968.0	1.302	0.905	0.859	0.844	0.869		,	5.451			3.331			7090	9.024			2.992	2.428	3.062			4.451	2.997		4.946	4.629	
THICKNESS	(INCH)	BEFORE	0.032	0.033	0.031		0.121	0.122	0.123		0.124	0.126	0.126			,	0.026			0.026			0	0.05/			0.03	0.03	0.027			0.046	0.044		0.039	0.037	
RESISTANCE THICKNESS	(OHM)	BEFORE	0.380	0.440	0.430		0.350	0.580	0.280		0.285	0.275	0.270				0.36			0.22				0.66			0.228	0.185	0.21			0.52	0.335	 	0.49	0.435	
	MATERIAL	COMPOSITION	LAMINATED	NIHL/NIHL	GC23N-4 /C-PLASTIC		LAMINATED	THICKTHIN	GC23N-5 /C-PLASTIC		LAMINATED	THIN/THICK	GC23N-6 /C-PLASTIC		LAMINATED GC23N-A-3/92	Pb-FOIL	C-PLASTIC	LAMINATED	GC23N-B-3/92	PP-FUIL C-PLASTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GC23N-B-3/92	Pb-FOIL	C-PLASTIC	LAMINATED GC23N MICBOTHENE &	C-PLASTIC	E E	2R	38		LAMINATE	GC23N-1-85%	GC23N-2-85%	MICHOTHENE	GC23N-3-80.3%	KY GC23N-4-80.3%	
	TEST	DATE	4/24/92				4/24/92	! ! !			4124192				5/12/92										6/5/92						5/20/92						
	SAMPLE	NI MPER	7.4.0				75.4				76.4	S .			77.A										78A						79A						

PERCENT	(%)			23.6111111	0 05167464	404/0109/9	12 4520148	0416264.61	17 5529788	00/6300							-				6031.57895							1447.05882	38171.6049		130,121225	870.588235								1	22243.75	11776.2887	15570.8408	
RESISTIVITY (OHM-CM)	AFTER			4.380		5.439	7000	2.204	2 261	3.301											93 604	6000						334.011	2624.672		22.225	78.740									1125.984	188.976	1105.391	
THICKNESS	AFTER			0.04	0	0.038		0.044	6	0.041											800.0	060.0						0.031	0.033		0.031	0.032									0.025	0.025	0.026	
RESISTANCE	(OHM) AFTER			0.445	1	0.525	6	0.253	i c	0.35											0	20.0						26.3	220		1.75	6.4									71.5	12	73	
RESISTIVITY	(OHM-CM) BEFORE			3.543		4.997		1.995	,	2.859												1.527						21.590	6.858	3.003	9.658	8.113	2.032					66.213	10.737	38.475	5.039	1.591	7.054	19.685
တ္တ	(INCH) BEFORE			0.04		0.039		0.044		0.042											0	0.098						0.031	0.031	0.059	0.032	0.033	0.062					0.022	0.022	0.022	0.025	0.024	0.024	0.025
RESISTANCE	(OHM) BEFORE			96.0		0.495		0.223		0.305											•	0.38						1.7	0.54	0.45	0.785	0.68	0.32					3.7	9.0	2.15	0.32	0.097	0.43	1.25
	MATERIAL	KY/CA	LAMINATE	GC23N-1-85%	MICHOTHENE/CA	GC23N·2-85%	MICHOTHENE	GC23N-3-80.3%	≩	GC23N-4-80.3%	KY/CA	LAMINATED	GC23N,MICROTHENE &	C-PLASTIC	5/92·1B	5/92-2B	00 00/0	5/92:3H 6/03:4B	0/95-40	LAMINALED	DOPED OXIDESOW	AND C-PLASTIC	LAMINATED	DOPED OXIDE-5/92	KY 7201 & 711	CPI ASTIC) (A)	70%-7201	75%-7201	85%-711	70%-7201 & CA	75%-7201 & CA	85%-711 & CA	LAMINATES	DOPED OXIDE, CA	C-PLASTIC, Pb FOIL	711 KYANR & Pb DUST	70%-W/CA-FOIL	70%-W/CA-DUST	70%-W/O CA-FOIL	70%-W/O CA-DUST	75%-W/CA-FOIL	75%-W/CA-DUST	75%-W/O CA-FOIL
	TEST		5/27/92	1	PG.139/141							6/9/92								6/10/92			6/26/92											6/30/92										
	SAMPLE	1 DOMONI	V 0 0	C								81A								82A			 844		-									85A										

PERCENT	(%)	21566.6667		13.25/5/58	234.782609	-24.0591398	1 81818182										57.3770492	5.26315789	48	763,636364						13.1147541	35.5932203	325.925926	1547.05882			2000	3.22580645	4.547.02003
RESISTIVITY	AFTER	984.252	,	3.773	36.089	9.268	12.248										2.779	2.582	5.713	8.976						2.058	2.582	8.707	38.454	SHOW			3.549	6.730
THICKNESS	AFTER A	0.028		0.012	0.042	0.048	0.054										0.068	0.061	0.051	0.025						990.0	0.061	0.052	0.043	Æ		;	0.071	0.063
RESISTANCE	(CHM) AFTER	7.0		0.115	3.85	1.13	1.68										0.48	0.4	0.74	0.57						0.345	0.4	1.15	4.2	SAMPLE			0.64	0.44
ш.	(CHM CM)	4.543		3.331	10.780	12.205	12.030	0.605									1 766	2.453	3.860	1.039						1.819	1.904	2.044	2.335	2.036			3.438	2.875
THICKNESS	(INCH)	0.026		0.013	0.033	0.05	0.054	0.028									0.068	0.061	0.051	0.025						990.0	0.061	0.052	0.043	0.047			0.071	0.063
HESISTANCE THICKNESS	(OHM)	0.3		0.11	1.15	1.55	1.65	0.043									308	0.38	0.5	0.066						0.305	0.295	0.27	0.255	0.243			0.62	0.46
	COMPOSITION	75%-W/O CA-DUST	5/92-DOPED OXIDE KY-711 C-PLASTIC	013-C-PLASTIC	OSO-DOPED OXIDE	040-DOPED OXIDE	050-DOPED OXIDE	LEAD DUST &	POETSOEF CALE	DRIED PRESSED AT	599F 30 TONS 55% BY WT	LAMINATE	DOPED OXIDE(5/92)	KY-711	భ	KET WITH	KY-/11 14%-KET/KYN-050	14%-KET/KYN040	14%-KET/KYN030	PhPOLYSULFONE	LAMINATE	DOPED OXIDE(5/92) KY-7201	- - - -	KET WITH	KY-7201	14%-KET/KYN050	14%-KET/KYN040	14%-KET/KYN030	14%-KET/KYN020	14%-KET/KYN026	LAMINATES DOPED OXIDE WAMICROTHENE	KET & MICROTHENE	80%-DOPED OXIDE-96A-1	80%-DOPED OXIDE-96A-2
ļ	TEST		7/13/92					7/22/92	167			7/28/92									7/30/92										8/10/92			
	SAMPLE		88A					92A				94A									95A									******	W96			

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(OHM) AFTER	(INCH) AFTER	(OHM-CM) AFTER	CHANGE (%)
NOWING 0.7 A	8/18/92	I AMINATES							
C	1	DOPED OXIDE/KY(8/92)							
		KET/KY(8/92)							
		75%-DOPED OXIDE-97A-1	0.21	0.052	1.590	1.65	0.052	12.492	685.714286
		75%-DOPED OXIDE-97A-2	0.23	0.063	1,437	0.43	0.063	2.687	86.9565217
		75%-DOPED OXIDE-97A-3	0.218	0.067	1.281	0.29	0.067	1.704	33.0275229
99A	8/21/92	LAMINATES							
		DOPED OXIDE/KY							•
		KET/KY						•	
		75%-DOPED OXIDE-99A-1	0.25	0.074	1.330	0.31	0.074	1.649	24
		75%-DOPED OXIDE-99A-2	0.22	0.076	1.140	0.32	0.076	1.658	45.4545455
		75%-DOPED OXIDE-99A-3	0.225	90.0	1.476	0.51	90.0	3.346	126.666667
		75%-DOPED OXIDE-99A-4	0.185	90.0	1.214	0.33	90.0	2.165	78.3783784
102A	9/16/92	LAMINATES							
		DOPED OXIDE/MICROTHENE							
		KETMICROTHENE							
		80%-DOPED OXIDE-102A-1	1.55	0.061	10.004	2.4	0.062	15.240	52.3413111
		80%-DOPED OXIDE-102A-2	1.15	0.073	6.202	1.63	0.077	8.334	34.3760587
		80%-DOPED OXIDE-102A-3	1.75	0.049	14.061	3.4	0.049	27.318	94.2857143
		80%-DOPED OXIDE-102A-4	1.13	0.046	9.671	1.83	0.048	15.010	55.199115
103A	9/23/92	LAMINATES							
		WASHED DOPED OXIDE							
		PRECOMPOUNDED							
		C-PLASTIC						0	47.000.000
		103A-1	0.58	0.08	2.854	1.5	0.08	73857	156.62089
		103A-2	0.595	0.063	3.718	9	0.063	37.495	908.403361
		103A-3	0.375	0.05	2.953	2.8	0.05	22.047	646.666667
		103A-4	0.355	0.04	3.494	12.5	0.04	123.031	3421.12676
104A	9/29/92	LAMINATES							
		WASHED DOPED OXIDE							
		PRECOMPOUNDED							•
		C-PLASTIC							
		104A-1	0.33	0.047	2.764	8.5	0.047	71.201	2475.75758
		104A-2	0.44	0.058	2.987	3.2	0.058	21.721	627.272727
		104A-3	0.31	0.064	1.907	5.2	0.064	31.988	1577.41935
		104A-4	0.355	0.073	1.915	2.9	0.073	15.640	716.901408
		104A-5	0.72	0.048	5.906	10.3	0.048	84.482	1330.55556
		104A-6	0.7	0.062	4.445	5.5	0.062	34.925	685.714286
		104A-7	0.455	0.066	2.714	5.5	990.0	32.808	1108.79121
		104A-B	0.54	0.066	3.221	4.3	0.066	25.650	696.296296
105A	10/9/92	KY (7/92) &							
		MICHOI HENE (5/92)							•

	1.0.1.1.	INIGOTAM	RESISTANCE THICKNESS		RESISTIVITY	RESISTANCE (OHM)	THICKNESS	RESISTIVITY (OHM-CM)	PERCENT CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		80%-LOADING							
		10%KY/90%MIC105A-1	0.17	0.056	1.195	0.45	0.056	3.164	164.705882
		20%KY/80%MIC105A-2	0.185	0.053	1.374	0.78	0.053	5.794	321.621622
		30%KY/70%MIC105A-3	0.173	0.053	1.285	1.85	0.053	13.742	969.364162
		40%KY/60%MIC,-105A-4	0.165	0.05	1.299	2.8	0.05	22.047	1596.9697
109A		KY (7/92) &							
		MICROTHENE (5/92)							
		80%-LOADING							
		DOPED OXIDE (5/92)	o c	0.04	2 785				
		1094.1	0.36	0.04	3.543	0.87	0.04	8.563	141.666667
		2.0001	0.33	0.041	3.169	44	0.042	412.448	12915.873
		109A-3	0.44	0.039	4.442	0.85	0.041	8.162	83.7583149
110A	10.26-92	LAMINATES							
		80% DOPED OXIDE(5/92)							
		MICRO.(5/92) &							
		KY(7/92)		•		•	o o	796 09	87777 7778
	400F/3 TONS	110A-1	0.225	0.038	2.331	Q	0.038	707.00	4074 40057
	400F/3 TONS	110A-2	0.35	0.039	3.533	4.8	0.039	48.455	12/1.4265/
	400F/3 TONS	110A-3	0.22	0.042	2.062	1.75	0.042	16.404	695.454545
***	400F/3 TONS	110A-4	0.33	0.041	3.169	0.57	0.041	5.473	72.72727
111A	10/29/92	LAMINATES							
	5MIN.SOAK/3MIN.CYC.	PRECOMPOUNDED							
		MICRO/DOPED OXIDE							
	350F/3 TONS	85%-LOADING							
		111A-1	-	0.042	9.374	1.95	0.042	18.279	95
	350F/3 TONS	80%-LOADING							000
		111A-2	2.1	0.043	19.227	ღ	0.043	27.467	42.65/1429
		KY/DOPED OXIDE							
	400F/3 TONS	75%-LOADING	,	•		•	0	0 0 17	, (
		111A-3	8.0	0.053	5.943	7:-	0.033	<u>.</u>	
	CHOH OLLOWO	MICHO/DOPED OXIDE							
	350F/3 LONS	1118-4	8.1	0.036	19.685	8	0.036	21.872	11.111111
1011	0011177	ANABATTO							
112A	11/5/92	LAMINATES 75% LOADING							
		DOPED OXIDE(7/92)							
		14%KET(9/92)							
	400F/3 TONS	KY(7/92) 112A-1	0.15	0.089	0.664		0.089	0.000	-100
	400F/3 TONS	112A-2	0.165	0.088	0.738		0.088	0.000	-100

SAMPLE	TEST DATE	MATERIAL COMPOSITION	RESISTANCE THICKNESS (OHM) (INCH) BEFORE BEFORE	THICKNESS (INCH) BEFORE	RESISTIVITY (OHM-CM) BEFOPE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
		LAMINATES 80% LOADING							
		DOPED OXIDE(7/92) MICROTHENE(5/92)							
		PRECOMPOUNDED							
		C-PLASTIC	4	4			0	0	00
	325F/3 TONS	112A-3	0.46	0.069	2.625		0.069	0.000	100
113A	11/10/92	LAMINATES	0.00		0				
		80% DOPED OXIDE(7/92) MICROTHENE(5/92)							
		, , V							
		PRECOMPOUNDED							
	SNOT 6/3300	C-PLASHC	0.40	0.064	3.014	4.7	0.064	28 912	859.183673
	325F/3 TONS	113A.2	0.37	0.004	2 207	4.6	0.066	27.440	1143.24324
	325F/3 TONS	113A-3	0.36	0.074	1.915	0.85	0.074	4.522	136.111111
-	325F/3 TONS	113A-4	0.41	0.068	2.374	0.71	0.068	4.111	73.1707317
114A	11/10/92	LAMINATES							
		80% DOPED OXIDE(7/92)							
		MICHOI HENE(5/92)							
		CECIN KOWOOSED							
		C-PLASTIC							
	325F/3 TONS	114A-1	0.43	0.062	2.731	1.75	0.062	11.113	306.976744
	325F/3 TONS	114A-2	0.42	0.069	2.396	1.36	0.069	7.760	223.809524
	325F/3 TONS	114A-3	0.46	0.068	2.663	0.97	0.068	5.616	110.869565
	325F/3 TONS	114A-4	0.64	0.076	3.315	1.05	0.076	5.439	64.0625
115A	11/24/92	LAMINATES							
		80% LOADING DOPED OXIDE							
		20% MICROTHENE							
- Warner ()		WASHING TECH. PRECOMPOUNDED							
		C-PLASTIC							
		.2%/.07GMS CA							
		325F/3 TONS				;			
	325F/3 TONS	115A-1 COARSE-X	0.38	0.073	2.049	0.52	0.072	2.843	38.7426901

PERCENT	(%)	48.5714286	108.695652	103.448276			.,												1	157.894/37	14 7474747	75	•								
RESISTIVITY	AFTER	2.843	960.9	6.934																5.434	0.577	4.176									
THICKNESS	AFTER	0.072	0.062	0.067																0.071	0.07	0.066	0.0								
RESISTANCE	AFTER (0.52	96.0	1.18																0.98	61.1	0.7	0.30								
<u>. </u>	BEFORE	1.914	2.921	3.408							1.892	1.664	5.171	3.639						2.107	2.828	2.432	3.242	2.329	2.780	3.937					2.316
=	(INCH)	0.072	0.062	0.067							0.077	0.071	0.067	0.066						0.071	0.071	0.068	0.000	0.071	0.065	0.004					0.068
RESISTANCE	(CHM)	0.35	0.46	0.58							0.37	0.3	0.88	0.61						0.38	0.51	0.42	0.50	0.42	0.46	0.64					4.0
	MATERIAL	115A-2 COABSE-X	115A-3 MEDIUM-X	115A-4 MEDIUM-X	I AMINATES	80% LOADING DOPED OXIDE	20% MICROTHENE	PRECOMPOUNDED	2%/ 07GMS CA	325E/3 TONS	116A-1 COARSE	116A-2 COARSE	116A-3 MEDIUM	116A-4 MEDIUM	LAMINATES	80% LOADING DOPED OXIDE	20% MICROTHENE	.15% TO .45% CA	325F/3 TONS						117-6A (.40%)	117-7A (.45%)	80% LOADING DOPED OXIDE	20% MICROTHENE	PRECOMPOUNDED	C-PLASTIC .15% TO .45% CA	325F/3 TONS 118-1A (.15%)
	TEST	325E/3 TONS	325F/3 TONS	325F/3 TONS	11/25/49	3675371					325F/3 TONS	325F/3 TONS	325F/3 TONS	325F/3 TONS	12/03/92											20170101	26/10/21			118	
	SAMPLE	I I CANCALI			1164	-									117A											V 0 + +	¥01-				

		_			_		Ŧ													_		2 (, ,		_	6			_								
PERCENT	CHANGE (%)	,		19.4554238	35.3233831	15	25														00 0404069	30.042100	21.2121213		50	43.902439											
RESISTIVITY	(OHM-CM) AFTER			2.282	2.350	2.625	2.605														71	3.470	3.556		13 709	20.024											
THICKNESS	(INCH) AFTFB			0.069	0.067	0.069	0.068														(1	0.059	0.062		9200	0.058											
RESISTANCE	(OHM)			0.4	0.4	0.46	0.45															0.52	0.56		1 05	2.95											
RESISTIVITY	(OHM-CM)	2.218	2.200	1 911	1.737	2.282	2.084						1	5.180	3.523	2.684	5.512			2.919	3.292	2.536	2.794		•	9.139 13.915							2.25/ 2.418				
THICKNESS	(INCH)	0 071	0.068	0.068	0.068	690.0	0.068							0.038	0.038	0.033	0.03			0.058	0.061	0.059	0.062		0	0.058						,	0.075				
RESISTANCE	(OHM)	0.4	5.0 38	0.00) (e) 0. 0	0.36						1	0.5	0.34	0.225	0.42			0.43	0.51	0.38	0.44			2.05							0.43			•	
	MATERIAL	118.34 (20%)	118:2A (.20%)		(%) C.) V5-011	(32.02)	118-2A (.40%)	THIN LAMINATES 80% LOADING DOPED OXIDE	20% MICROTHENE	PRECOMPOUNDED	C-PLASTIC	.25% CA	325F/3 TONS	119-1A	119-2A	119-3A	119-4A	HAND COMPOUNDED	CARBON PLASTIC	120-1A 350F	120-2A 350F	120-3A 375F	120-4A 375F	PRECOMPOUNDED	CARBON PLASTIC	120-5A 120-6A	CULVINITA	LAMINALES	80% LOADING LOPED OXIDE	.25% CA	HANDCOMPOUNDED	CARBON PLASTIC	121-1A 121-2A		LAMINALES	2.003 NET BLACK 10.37G MICRO (5/92)	325F/15 TONS
	TEST	DATE						12/04/92 119A										19/16/99									121A	12/1//92						122A	12/17/92		
	SAMPLE	NUMBER						119A										1204										121							122A		

			Ю	Ø	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(MHO)	(INCH)	(CHM-CM)	CHANGE (8)
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BETOFE	AFIEH	AFIEH	A-IEH	[70]
		122-1A	0.46	0.051	3.551	1.4	0.051	10.807	204.347826
		122-2A	0.43	0.05	3.386	5.4	0.051	41.686	1131.19015
		40.00	•	90	acc	44	0.051	11 193	246.724055
		122.38	4.0	0.03	3.220	0.82	0.052	6.208	90,6976744
		V4-331	2	1		i 5			
	123A								
123A	01/04/93	LAMINATES							
		80% LOADING DOPED OXIDE							
		20% MICHOLHENE HANDOOMPO INDED							.,,
_		C-PI ASTIC							
		.30% TO 1.00% CA							
		325F/3 TONS							
		123-1A (30%)	0.49	0.08	2.411	0.58	0.08	2.854	18.3673469
		_	0,36	0.081	1.750	0.37	0.081	1.798	2.7777778
		_	0.58	0.08	2.854	0.74	0.081	3.597	26.0110685
		_	0.43	0.081	2.090	0.51	0.08	2.510	20.0872093
		_	0.44	0.078	2.221				
		_	0.65	0.078	3.281				
		123-7A (.60%)	0.62	0.076	3.212				
		123-8A (.65%)	9.0	0.076	3.108				
		123-9A (.70%)	99.0	0.078	3.331				
		123-10A (.75%)	9.0	9.00	3.108				
-		_	6.0	0.08	4.429				
		_	0.68	0.08	3.346				
			9.0	0.072	3.281				
		123-14A (.95%)	0.52	0.075	2.730				
707	4 4 0 4 4	123-13A (1.00%)	0.04	0.073	۷.033				
77	124A	90% I OADING DOBED OVIDE							
	06-NWC-10	80 % LOADING BOYED OAIDE							
		NEUROBOTHENE							
-		HANDOOMBO INDED							
		C-PLASTIC							
		1.5% TO 3.0% CA							
		325F/3 TONS							
		124-1A (1.5%)	0.62	0.075	3.255				
		124-2A (2.0%)	0.98	0.077	5.011				
		124-3A (2.5%)	0.83	0.076	4.300				-

																																											_	_
PERCENT	(%)																							•			-				62	77.7777.77	7 2 2 4 4 7 9 6 7	1.00341142637	260,100,26.1									
RESISTIVITY	AFTER																														1.969	1.709	1	7.820	3.300									
THICKNESS	(INCH) AFTER																													,	0.08	0.076	1	0.073	0.062									
RESISTANCE	(OHM) AFTER																														9.4	0.33		1.45	0.53									
	(OHM-CM) BEFORE	3.375						2.832	5.042	3.307	4.555	3.474	3.331	3.011	3.011	4.006	2.625												9.358	18.394	1.575	1.399		7.550	3.302						4.252	5.249	4.419	4.499
RESISTANCE THICKNESS	(INCH)	0.077						0.057	0.057	0.05	0.051	0.051	0.052	0.051	0.051	0.057	0.057												0.061	0.061	0.08	0.076		0.073	0.062						0.05	0.048	0.049	0.049
RESISTANCE	(OHM)	0.66						0.41	0.73	0.42	0.59	0.45	0.44	0.39	0.39	0.58	0.38												1.45	2.85	0.32	0.27		1.4	0.52		"	,			0.54	0.64	0.55	0.56
	MATERIAL	124-4A (3.0%)	LAMINATES	TEMP 230F TO 400F	85% DOPED OXIDE PELLETS	HANDCOMPOUNDED	C-PLASTIC	125-1A (300F)	125-2A (300F)	125-3A (350F)	125-4A (350F)				125-8A (400F)	125:11A (275F)	125-12A (275F)	LAMINATES	80% TO 90% LOADING	DOPED OXIDE(7/92)	.35% CA	SAMPLES 182	.30% CA	SAMPLES 3-7	HANDCOMPOUNDED	C-PLASTIC	MICHOTHENE (5/92)	325F/3 TONS	126-1A (80%)	126-2A (80%)	126-3A (85%)	126-4A (85%)	275F/3 TONS		126-7A (82.5%)	CHENTRAL	LAMINATES 96% POPED OXIDE BELLETS	14% TO 22%	14% 10 EE //	325F/3 TONS	129-1A (15%)	129-2A (15%)	129-3A (16%)	129-4A (16%)
	TEST	1100	125A	01/12/93														126A	01/14/93																		01/15/93							
	SAMPLE	MOWDEN	1054															126																			129A		-					

TEST
129-6A
129-7A (22%)
LAMINATE 325F/3 TONS
130-1A (18%)
130-2A
130-3A
130-4A (16%)
LAMINATE 325F/3 TONS
131-1A(3 TONS)
131-3A(15 TONS)
131-4A(15 TONS)
131-5A(3 TONS)
LAMINATE 325F/3 TONS
132-1A(3 TONS)
132-2A(3 TONS)
132-3A(15 TONS)
132-4A(15 TONS)
LAMINATE 325F/3 TONS
133-1A(3 TONS)
133-2A(3 TONS)
133-3A(15 TONS)
133-4A(15 TONS)
LAMINATE 325F/3 TONS
134-1A(3 TONS)
134-2A(3 TONS)
134-3A(15 TONS)
134-4A(15 TONS)
LAMINATE 325F/3 TONS
135-1A(.010")
135-2A(.010")
135-3A(.006")
135-4A(.006")
LAMINATE 325F/3 TONS
136-1A(22%)

			RESISTANCE	RESISTANCE THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(MHO)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		136-2A(22%)	0.57	0.033	6.800				
		136-3A(24%)	0.34	0.035	3.825				
		136-4A(24%)	0.39	0.034	4.516				
137A	02/03/93	I AMINATE 325F/3 TONS							
		137-1A	0.24	0.041	2.305				
		137-2A	0.235	0.043	2.152				
		137-3A	0.305	0.042	2.859				
		137-4A	0.215	0.043	1.969				
MFP	02/03/93	LAMINATE 325F/3 TONS							
		MRP-1	0.48	0.056	3.375	0.59	0.056	4.148	22.9166667
		MRP-2	0.41	0.061	2.646	0.48	90.0	3.150	19.0243902
		MRP-3	0.49	0.054	3.572	0.89	0.054	6.489	81.6326531
		MRP-4	0.43	0.058	2.919	0.47	0.058	3.190	9.30232558
138A	02/04/93	LAMINATE 325F/3 TONS							
		138-1A	0.34	0.03	4.462				
		138-2A	9.0	0.032	7.382				
		138-3A	0.43	0.036	4.703				
		138-4A	0.35	0.035	3.937				
139A	02/05/93	LAMINATE 325F/3 TONS							
				0	6				
		139-1A(18%)	0.39	0.022	6.979				
		139-24(18%)	0.30	0.025	5.009				
		139-34(22%)	5.5	0.020	4.997				
RR AND R3	02/05/03	I AMINATE 325/3 TONS	4.0	0.027	4.837				
)		BB-1	0.76	0.039	7.672				
		BR-2	0.85	0.039	8.581				
		R3·1	0.47	0.042	4.406				
		R3-2	0.51	0.049	4.098				
EXTRUDED		168-1A	1.2						
3/24/93		100/115/120/125							
		168-2A	IR TOO HIGH.						
		100/110/120/125	LAMINATION						
		168-3A	STOPPED.						
169A	03/25/93	LAMINATE 325F/3 TONS							
		169-1A	0.89	0.041	8.5461878	>100			

PERCENT CHANGE (%)		-2.94117647	50.122549	3.23529412	43.6363636 35.8974359 44.6808511 28.7526427	2.38095238 -2.43902439 2.63157895 -2.28571429 59.5238095 51.3815789
RESISTIVITY (OHM-CM) AFTER		6.337622431	8.323959505	3.543307087	7.585942001 4.968128984 6.22596594 5.310382714	4.232283465 4.705204532 3.937007874 3.543307087 6.594488189 5.807086614 4.921259843
THICKNESS (INCH) AFTER		0.041	0.035	0.04	0.041 0.042 0.043 0.043	0.04 0.039 0.039 0.04 0.04
RESISTANCE (OHM) AFTER	>100	0.66	0.74	0.36	0.79 0.53 0.68 0.58	0.43 0.49 0.36 0.67 0.59
RESISTIVITY (OHM-CM)	4.9932783	6.5296716	3.9370079 7.6490439 5.2493438 5.6983009	3.4322633	5.281352 3.655793 4.3032412 4.1244844	4.1338583 4.8228346 3.836059 3.6261915 4.1338583 3.6261915
THICKNESS (INCH) BEFORE	0.041	0.041	0.035 0.035 0.039 0.038	0.039	0.041 0.042 0.043 0.042	0.04 0.039 0.038 0.038 0.04 0.039
RESISTANCE 1 (OHM) BEFORE	0.52	6.0	0.35 0.68 0.52 0.55	0.34	0.55 0.39 0.47	0.42 0.49 0.38 0.35 0.38 0.38
MATERIAL	169-2A	LAMINATE 325F/3 TONS 170-1A 170-2A	LAMINATE 325F/3 TONS 171-1A 171-2A 171-3A 171-4A	LAMINATE 325F/3 TONS 173-1A 173-2A	LAMINATE 325F/3 TONS 175-1A(160) 175-2A(160) 175-3A(180) 175-4A(180)	LAMINATE 325F/3 TONS 176-1A(160) 176-2A(160) 176-3A(180) 176-4A(180) 176-1A 176-3A 176-4A
TEST	100	03/26/93	03/30/93	04/2/93	04/05/93	04/06/93
SAMPLE	HIXIXI	170A	171A	173A	175A	176A

SAMPLE			RESISTANCE	Ė	RESISTIMITY	RESISTANCE	THICKNESS	RESISTIVITY (OHM.CM)	CHANGE
	TEST	MATERIAL COMPOSITION	(OHM) BEFORE	(INCH) BEFORE	(OHM-CM) BEFORE	(OHM) AFTER	(INCH) AFTER	AFTER	(%)
5	1100	176-3A	0.38	0.039	4.134	6.0	0.04	8.858267717	114.278368
		SAMPLE TESTED FOR 30 DAYS	o o	0	***	79 0	0.039	6 46073087	56.282798
		176-3A DEADING TAKEN AFTER 1 DAV	0.38	0.039	4.134	0.0			
		176-3A	0.38	0.039	4.134	0.833	0.04	8.198818898	98.3265336
177A	04/12/93	READING TAKEN AFTER 2 DAYS LAMINATE 325F/3 TONS							
		177-1A(160)	0.61	0.041	5.8574995	0.53	0.041	5.089302862	-13.1147541
		177-2A(160)	0.81	0.044	7.2476736	0.74	0.042	6.936632921	-4.29159318
		177.34(180)	1.05	0.043	9.6136239	0.77	0.042	7.217847769	-24.9206349
		177-4A(180)	0.84	0.044	7.5161059	0.65	0.043	5.951290972	-20.8194906
178A	04/14/93	LAMINATE 325F/3 TONS							
		178-14(160)	0.54	0.046	4.6217049	0.58	0.046	4.964053406	7.40740741
		178-2A(160)	0.64	0.047	5.361032	0.68	0.045	5.949256343	10.9722222
		178.34(180)	0.53	0.045	4.6369204	0.48	0.045	4.199475066	-9,43396226
		178-4A(180)	0.45	0.041	4.3211062	0.48	0.041	4.60917995	6.66666667
179A	04/15/93	LAMINATE 325F/3 TONS							
		179-1A(160)	0.39	0.045	3.4120735	0.46	0.045	4.024496938	17.9487179
		179-2A(160)	0.31	0.043	2.838308	0.39	0.043	3.570774583	25.8064516
		179-3A(180)	0.28	0.043	2.563633	0.34	0.043	3.11298297	21.4285714
		179-4A(180)	0.31	0.043	2.838308	0.38	0.043	3.479216261	22.5806452
181A	04/28/93	LAMINATE 325F/3 TONS							
		181-1A(200) 181-2A(200)	0.47	0.063	2.9371329 2.6691579	0.58	0.062	3.683007366 3.86793756	25.3946465 44.9122807
		181-3A(180)	0.54	0.064	3.3218504	0.61	0.064	3.75246063	12.962963

PERCENT CHANGE (%)	5.45454545						38.8755981	29.6600877	47.4576271		9037606	34.482/580	28 4651792		52.6315789	35.7241379			51.3095238	91.182/90/	6674.19355
RESISTIVITY (OHM-CM) AFTER	3.567913386						4.831782391	4.511154856	3.670278927			6.67579596	6.701289998		4.151753758	3.228346457			14.52943382	11.90258194	137.7952756
THICKNESS (INCH) AFTER	0.064						0.044	0.048	0.059			0.046	0.047	5	0.055	0.05			0.042	0.043	0.03
RESISTANCE (OHM) AFTER	0.58						0.54	0.55	0.55	0.0		0.78	0.8	0	0.58	0.41			1.55	. .	10.5
RESISTIVITY (OHM-CM) RFFORF	3.3833661	3.6673498	4.5931759	3.7706554	4.0727668		3.4792163	3.4792163	2.5357	2.0240719		4.9640534	4.2793564	4.5669291	2 7201145	2.3786089			9.6024582	7.8740157	2.0341207
THICKNESS (INCH)	0.064	0.073	90 0	0.071	0.058		0.043	0.043	0.059	0.057		0.046	0.046	0.05	0.055	0.048			0.041	0.041	0.03
RESISTANCE (OHM)	0.55	0.68	0.7	0.68	9.0	n al collier.	0.38	0.38	0.38	0.38		0.58	0.5	0.58	86.0	0.29			-	0.82	0.155
MATERIAL	181-4A(180)	LAMINATE 325F/3 TONS 182-1A(200)	182-2A(200) Pb THEN SANDED	182-3A(180) SANDED	182-4A(180) Pb THEN SANDED	I AMINATE 325E/3 TONS	183-1A	183-2A	183-3A	183-4A	LAMINATE 325F/3 TONS	184-1A	184-2A	184-3A	LAMINATE 325F/3 TONS	185-2A	IHICK SUBSTRATE	LAMINATE 325F/3 TONS	186-1A	186-2A	LAMINATE 330F/2 TONS 187-1A
TEST	DATE	04/28/93				04/29/93	06/67/40				05/04/93				05/05/93			05/05/93			
SAMPLE	N. W.	182A 4V BATTERIES FOR PASTE	AUTESION			1834	C 200				184A				185A			186A			187A

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(MHO)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BETORE	AFTER	AFTER	AFTER	(%)
		187-2A	0.135	0.029	1.832745	20	0.029	271.5177844	14714.8148
		187-3A	0.135	0.029	1.832745	6.2	0.029	84.17051317	4492.59259
		187-4A	0.155	0.03	2.0341207	8.1	0.03	106.2992126	5125.80645
188A		LAMINATE 330F/2 TONS				,		1	0
		188·1A	0.14	0.028	1.9685039	9	0.03	/8./4015/48	3900
		188-2A	0.14	0.031	1.7780036	6	0.03	118.1102362	6542.85/14
		188·3A	0.135	0.031	1.7145034	8.1	0.031	102.8702057	2900
		188-4A	0.155	0.031	1.9685039	9.6	0.031	121.9202438	6093.54839
189A	06/14/93	LAMINATE 295F/3 TONS							
		189-1A	0.97	0.045	8.486				
06/14/93	IR OF SAMPLE WAS TOO	S TOO HIGH. NEW SAMPLES WILL BE MADE AND TESTED	BE MADE AND	TESTED					
		189-3A(SANDED)	0.47	0.051	3.6282229	0.7	0.051	5.403736298	48.9361702
		189-4A(SANDED)	0.54	0.045	4.7244094	0.83	0.045	7.261592301	53.7037037
190A	06/16/93	LAMINATE 295F/3 TONS	7.	980	9 9976570				
		W1-061	0.74	0.000	9.307.037.9				
		190-2A	0.70	0.092	3.337.636				
		190-3A	0.73	0.080	3.3410700				
		190-4A	99.0	0.086	3.0214246				
-									
191A	06/18/93	LAMINATE 295F/3 TONS							
		191-1A(006)SANDED	0.25	0.044	2.2369363	1.6	0.044	14.31639227	540
		191-2A(006)	0.255	0.045	2.2309711	0.97	0.044	8.679312813	289.037433
		191-2A	0.255	0.045	2.2309711	0.38	0.044	3.400143164	52.4064171
-	READING	READING TAKEN AFTER BEING STORED FOR 2.5 MONTHS	R 2.5 MONTHS						
		191-3A(007)SANDED	0.23	0.043	2.1058414	0.48	0.044	4.294917681	103.952569
		191-4A(007)	0.29	0.044	2.5948461	0.58	0.044	5.189692198	100
192A	06/18/93	LAMINATE 295F/3 TONS							0,000
		192-1A	. 3	0.051	10.03551	3.5	0.049	28.12148481	180.21978
		192-2A	6.	0.049	15.265949	4.4	0.05	34.64566929	126.947368
									•
40.000									
193A	06/18/93	LAMINATE 295F/3 TONS							
		193-1A(SANDED)	0.19	0.062	1.2065024	0.82	0.062	5.207010414	331.578947
		193-2A	0.26	0.058	1.7648656	2.2	0.059	14.68036834	731.812256

SAMPLE	TEST	MATERIAL	RESISTANCE (OHM)	F	RESISTIVITY (OHM-CM)	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHÄNGE
NUMBER	DATE	COMPOSITION	BEFORE	H. C.		AF-IEH	A-1EH	AFIEN	/0/
194A	06/24/93	LAMINATE 295F/3 TONS 194-14(008")	0.265	0.031	3.3655067	8.5	0.032	104.5767717	3007.31132
		104.24(008")	0.32	0.042	2 999625	>100	0.043		
		194-2A(010")	0.29	0.04	2.8543307	> 100	0.04		
		194-4A(.010")	0.31	0.034	3.5896248	4 4	0.034	509.4951366	14093.5484
									-
105.4	06198103	I AMINATE 295E/3 TONS							
	00000	195.18	0.46	0.046	3.9370079	0.65	0.046	5.5631633	41.3043478
		195-2A	0.58	0.046	4.9640534	0.72	0.046	6.162273194	24.137931
196A	06/28/93	LAMINATE 295F/3 TONS							
		< + 400 · •		0.00	10 289907	1 15	0.045	10.06124234	-2.222222
		196:1A	50 -	0.045	9.1863517) e	0.045	11.3735783	23.8095238
		C2.061	3)))		
197A	06/29/93	LAMINATE 295F/3 TONS							
		107.14(315E)	0 24	0.044	2 1474588	7.0	0.045	6.124234471	185.185185
		107 04 (010)	0.975	0.00	2 4059493	0.65	0.045	5.686789151	136,363636
		197.2A(313F)	20.23	0.0	1 0685039	0.00	0.045	6.386701662	224.44444
		197-34(335F)	0.223	0.043	1.9003039	0.00	0.043	6.050R94B59	125
AM		197-4A(335F)	0.30	0.031	2.17.30044	0.0	100.0	3 237005363	50 7407407
		197-5A(355F)	0.24	0.044	4 0047504	0.37	0.045	2 405949256	25
		197-0A(303F)	0.22	0.043	9 055993	0.29	0.045	2 537182852	23.4042553
		197-17(373F)	0.233	0.045	1 8810140) () ()	0.045	2 624671916	39,5348837
		197-0A(3/3/)	0.205	0.045	1 7935258	0.275	0.045	2.405949256	34.1463415
		197-10A(400F)	0.2	0.046	1.7117426	0.275	0.045	2.405949256	40.5555556
198A	06/29/93	LAMINATE 295F/3TONS			1	(0	20000	00
		198-1A(315F)	0.43	0.049	3,4549253	0.86	0.049	0.909650554	0.001
		198-2A(315F)	0.41	0.05	3.2283465	1.25	0.05	9.842519685	204.878049
		198-3A(335F)	0.295	0.047	2.4711007	0.82	0.047	6.868822248	177.966102
		198-4A(335F)	0.32	0.052	2.4227741	0.54	0.052	4.088431254	68.75
		198-5A(355F)	0.28	0.046	2.3964396	1.75	0.044	15.65855404	553.409091
		198-6A(355F)	0.23	0.046	1.9685039	₫,	0.044	35.79098067	1718.18182
		198-7A(375F)	0.21	0.047	1.7590886	1.95	0.046	16.6894899	848.757764
		198-8A(375F)	0.36	0.049	2.8924956	0.65	0.048	5.331364829	84.3171296
		198-9A(400F)	0.245	0.048	2.0095144	1.2	0.046	10.27045532	411.091393

TEST	MATERIAL	HESISTANCE (OHM)	≐ -	RESISTIVITY (OHM-CM)	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHANGE
DATE	NOMPOSITION (1991)			2 0007275	AFIEM	AF 1ER	11 3735783	441.666667
	198-10A(400F) 0.24 0.045 2.0397373 STABILITY TESTING WAS SHORTENED BY ONE DAY ON SAMPLES 1-4 PROBLEM WITH POWER SUPPLY ON SAMPLES 5A-8A	0.24 SHORTENED BY OWER SUPPLY	U.U43 YONE DAY OI ON SAMPLES	Z.0397373 N.SAMPLES 1-4 S.5A-8A		2,000		
07/21/93		0.66	0.044	5.9055118				
	199-2A(NOT SANDED)	0.02	0.043	5.673801	с С	0.045	4.374453193	57.7060932
	199-3A(SANDED) 199-4A(SANDED)	0.37	0.043	3.3876579	0.54	0.044	4.831782391	42.6289926
07/23/93	LAN	0.45	0.043	4.1201245	0.58	0.044	5.189692198	25 959596
	200-2(SANDED)	0.47	0.045	4.111986	99.0	0.044	5.905511811	43.6170213
07/23/93	3 LAMINATE 295F/3 TONS	08.0	0.046	0 7387881	0 4	0.043	3.662332906	33.7209302
	201-1(323)	0.32	0.040	2 7009705	4.0	0.043	3.662332906	35.5932203
	201-2(939)	0,34	0.044	3.0422334	0.45	0.045	3.937007874	29.4117647
	201-4(400)	0.31	0.044	2.773801	0.58	0.044	5.189692198	87.0967742
	201-5(425)	0.31	0.044	2.773801	1.4	0.044	12.52684324	351.612903
07/23/93	3 LAMINATE 295F/3 TONS							
		0.41	0.043	3.7538912	0.71	0.043	6.500640908	73.1707317
	202-2(350)	0.31	0.043	2.838308	0.48	0.043	4.394799487	54.8387097
	202-3(375)	0.35	0.044	3.1317108	0.54	0.044	4.831782391	54.2857143
	202-4(400)	0.38	0.043	3.4792163	0.54	0.044	8 768790265	232,20339
	202-5(425)	0.233		Z.0333040	9			
07/23/93	LAMIN					0,00	00 05886764	855 182073
	203-1(325)	0.34	0.044	3.0422334	- c	0.042	19 68503937	423.809524
	203-2(330)	0.36	0.044	3.2211883	1 C	0.042	46.86914136	1355.02646
	203-4(400)	0.5	0.044	4.4738726	ო	0.043	27.4674968	513.953488
07/27/93	3 LAMINATE 300F/3 TONS							
	204-1A(250)	0.62	0.046	5.3064019	1.6	0.046	13.69394043	158.064516
	204-2A(275)	0.45	0.044	4.0264853	0.83	0.044	7.42662849	84.444444
	204-3A(300)	0.51	0.045	4.4619423	0.68	0.045	5.949256343	33.3333333
	204-4A(325)	0.51	0.045	4.4619423	0.98	0.045	8.5/3928259	92.1506027
	204-5A(350)	0.47	0.044	4.2054402	2.9	0.044	25.94846099	200 516008
	204-6A(375)	0.46	0.044	4.1159628	2.35	0.045	20.55993001	399.516908

SAMPLE	TEST	MATERIAL	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHANGE (%)
L-XIVON	7740	ACHICA INCA	3	2	1				
205A SEE BATTERY BUILD									
206A	8/10/93	LAMINATE 300F/3 TONS 206-1A(SP006)	0.275	0.053	2.0427871	0.34	0.053	2.525627693	23.6363636
		206-2A(SP006)	0.25	0.052	1.8927922	0.31	0.053	2.30277819	21.6603774
		206-3A(SP007) 206-4A(SP007)	0.36	0.052	2.7256208 1.7085129	0.48	0.052	3.6341611114 2.574197456	50.6688963
207A	8/10/93	LAMINATE 300F/3 TONS							
		207-1A(SP006) 207-2A(SP006)	0.83	0.043	7.5993408	1.65 0.64	0.042	15.46681665 5.999250094	103.528399
		(20043) VE 206	9 0	6700	8 780500	-	0 044	8 947745168	1 79924242
		207-4A(SP007)	0.90	0.042	8.3427072	0.86	0.041	8.258114077	-1.01397643
2084	8/11/93	LAMINATE 300E/3 TONS							
2001		208-1A	0.4	0.037	4.2562247	9.0	0.039	6.056935191	42.3076923
		208-2A	0.5	0.038	5.1802735	0.7	0.038	7.252382926	40
		208-3A	0.3	0.036	3.2808399	0.54	0.037	5.745903384	75.1351351
		208-4A	0.32	0.038	3.3153751	0.73	650.0	7.369271149	122.273041
209A	8/16/93	LAMINATE 300F/3 TONS	90 0	0.051	7 4108384	3.4	0.051	26 24671916	254,166667
		209-2A	1.35	0.053	10.028228	. 6 .	0.053	31.941762	218.518519
210A	8/24/93	LAMINATE 300F/3 TONS							
		210-1A	0.28	0.033	3.3404915	13.75	0.033	164.0419948	4810.71429
N HEBON		210-2A	0.23	0.033	2.7439752	- 3	0.034	127.3737842	4541.94373
MOH		210-3A	0.41	0.041	3.9370079	4.5	0.043	21.97399744	456.139333
DE WAL		210-4A	0.56	0.042	5.2493438	у, 4.	0.043	7.19.7.399744	000000000000000000000000000000000000000
211A	9/2/93	LAMINATE 300F/3 TONS							

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(WHO)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		211-1A	0.56	0.032	6.8897638	69.0	0.03	9.05511811	31.4285714
		211-2A	0.41	0.031	5.2070104	0.62	0.031	7.874015748	51.2195122
		211-3A	0.32	0.024	5.2493438	0.56	0.024	9.186351706	7.5
		211-4A	0.33	0.023	5.6487504	8.0	0.024	13.12335958	132.323232
212A	9/8/93	LAMINATE 300F/3 TONS							
		212.1A	0.86	0.044	7,6950608	1.25	0.044	11.18468146	45.3488372
		212-2A	66.0	0.044	8.8582677	4.4	0.044	39.37007874	344.44444
		212-3A	0.64	0.043	5.8597326	2.3	0.043	21.05841421	259.375
		212-4A	0.72	0.043	6.5921992	1.9	0.043	17.3960813	163.888889
213A	9/16/93	LAMINATE 350F/3 TONS							
)	213-14	9	0.035	29 246344				
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) e	0.036	37 182852				
		42-012 40 010	† 0	0.000	40 744667				
		213-3A	ص ص	0.035	42.744057				
		213-4A	2.8	0.036	30.6211/2				
		213-5A	2.5	0.04	24.606299				
		213-6A	3	0.036	32.808399				
214A	9/20/93	LAMINATE 350F/3 TONS							
		214-1A	0.5	0.067	2.9380656				
		214-2A	9.0	0.082	2.8807375				
		214-3A	0.84	0.081	4.082823				•
		.214-4A	0.82	0.081	3.9856129				
		*214-5A	0.86	0.081	4.1800331				
		*SAMPLES NOT SURFACE TREATED	<u> </u>						
215A	9/22/93	LAMINATE 350F/3 TONS							
		215-1A	0.45	0.022	8.0529707	8.3	0.022	148.5325698	1744.44444
		215-2A	0.3	0.021	5.624297	6.9	0.022	123.4788833	2095.45455
		215-3A	0.34	0.022	6.0844667	9.5	0.022	170.0071582	2694.11765
		215-4A	0.36	0.022	6.4423765	16	0.022	286.3278454	4344.44444
216A	9/27/93	LAMINATE 350F/3 TONS							
		216-1A	0.37	0.024	6.0695538	3.7	0.024	60.69553806	006
		216-2A	0.285	0.022	5.1002147	1.7	0.021	31.87101612	524.895572
		216-3A	0.34	0.021	6.3742032	0.92	0.021	17.24784402	170.588235
		216-4A	0.37	0.02	7.2834646	1.9	0.02	37.4015748	413.513514

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(MHO)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
217A	9/29/93	LAMINATE 300F/3 TONS							
		217-1A	0.48	0.052	3.6341611	99.0	0.052	4.996971532	37.5
		217-2A	0.43	0.05	3.3858268	0.5	0.05	3.937007874	16.2790698
		217-3A	0.47	0.052	3.5584494	0.51	0.052	3.861296184	8.5106383
		217-4A	0.46	0.05	3.6220472	9.0	0.05	4.724409449	30.4347826
V 0 + C	60,000	TONS TOWN							
7812	66/67/6	CAMINATE SOUP/S LONS	c	0.064	6 947661				•
		A1.912	Б. Э	0.03	0.347,001				
		218-2A	- :	0.051	7.7196233				
		218-3A	0.7	0.051	5.4037363				
		218-4A	0.73	0.051	5.635325				
219A	10/4/93	LAMINATE 350F/3 TONS							
		LAMINATE 350F/30 TONS				,	4		0010100
		219-1A(30 TONS)	0.46	0.038	4.7658516	0.73	0.038	7.563199337	58.6956522
		219-2A(30 TONS)	0.4	0.038	4.1442188	0.74	0.038	7.666804807	85
		219-3A(3 TONS)	0.37	0.039	3,73511	8.0	0.04	7.874015748	110.810811
		219-4A(3 TONS)	0.43	0.04	4.2322835	0.77	0.04	7.578740157	79.0697674
220A	10/6/93	LAMINATE 300F/3 TONS							
		220-1A	0.34	0.021	6.3742032	0.88	0.022	15.7480315	147.058824
		220-2A	0.3	0.019	6.2163282	69'0	0.019	14.29755491	130
		220-3A	0.28	0.02	5.511811	0.54	0.02	10.62992126	92.8571429
		220-4A	0.34	0.019	7.045172	0.7	0.019	14.50476585	105.882353
221A	10/11/93	LAMINATE 300F/3 TONS						The state of the s	
		221-1A	0.83	0.045	7.2615923	1.15	0.045	10.06124234	38.5542169
		221-2A	0.81	0.044	7.2476736	1.1	0.044	9.842519685	35.8024691
		221-3A	0.85	0.045	7.4365704	-	0.045	8.748906387	17.6470588
		221-4A	0.92	0.044	8.2319256	1.3	0.044	11.63206872	41.3043478
222A	10/15/93	LAMINATE 300F/3 TONS							
		222-1A	8.0	0.026	12.11387	1.15	0.026	17.41368867	43.75
		222-2A	1.2	0.025	18.897638	- -	0.025	17.32283465	-8.3333333
		222-3A	0.78	0.025	12.283465	1.15	0.025	18.11023622	47.4358974
		222-4A	0.91	0.025	14.330709	0.82	0.025	12.91338583	-9.89010989
223A	10/18/93	LAMINATE 300F/3 TONS							
		223-1A	0.54	0.044	4.8317824	0.55	0.045	4.811898513	-0.41152263
		223-2A	0.49	0.044	4.3843951	0.7	0.044	6.263421618	42.8571429
		223-3A(WI)	.470/.620	0.044	5.54	1.15	0.045	10.06124234	81.6108726
		223-4A(WI)	.440/.450	0.045	3.93	-	0.044	8.947745168	127.677994
		HEIM CINCOUS SECOND WITH	H						
9944	10/19/93	I AMINATE 350F/3 TONS							
		224-1A	1.7	0.08	8.3661417				_

			S	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(CHM-CM)	(OHM) AFTER	AFTER	AFTER	(%)
NOWICK	מועס	224.2A	1.65	0.08	8.1200787				
		224:3A	1.7	0.08	8.3661417				
		.224-4A	1.65	0.08	8.1200787				
		.224-5A	1.6	0.081	7.7768057				
		224-6A	1.75	0.08	8.6122047				
		224-7A	1.85	0.08	9.1043307				
		224-8A	1.8	0.08	8.8582677				•
		224.9A	2	0.081	9.7210071				
		224·10A	1.8	0 081	8.7489064				
		SAMPLES SURFACE TREATED							
225A	10/20/93	LAMINATE 300F/3 TONS				(0	0 110606000	110 285714
		(TTS)225·1A	0.175	0.046	1.4977747	0.36	0.045	3.149000299	110.203714
-		(TTS)225-2A	0.195	0.045	1,7060367	0.46	0.044	4.115962///	141.256741
		(138S)225-3A	0.235	0.046	2.0112975	0.285	0.045	2.49343832	23.97.163.12
		(138S)225-4A	0.21	0.045	1.8372703	0.245	0.046	2.096884629	14.1304348
226A	10/21/93	LAMINATE 300F/3 TONS							
		(TTS)226-1A	0.14	0.028	1.9685039	100	0.028	1406.074241	71328.5714
		(TTS)226-2A	0.16	0.028	2.2497188	100	0.028	1406.074241	62400
		(138S)226-3A	0.23	0.028	3.2339708	0.23	0.028	3.233970754	0
		(138S)226-4A	0.28	0.027	4.082823	0.34	0.029	4.615802335	13.0541872
		(30 DAYS)226-3A	0.23	0.028	3.2339708	0.28	0.028	3.937007874	21.7391304
227A	10/22/93	LAMINATE 300F/3 TONS			1	(0	1000000	7 14085714
		227-1A	0.84	0.044	7.5161059	6.0	0.044	40 6202071	10 7916667
		227-2A	0.96	0.043	8.789599	<u> </u>	0.043	10.3636771	17 0010766
		227-3A	0.94	0.044	8.4108805	Ξ,	0.044	9.842319063	1 65484634
		227-4A	0.94	0.043	8.6064823	-	0.040	0.7 40300007	
228A	10/25/93	LAMINATE 300F/3 TONS	90	0.046	2 0055/105	0.73	0.046	6.247860322	108.571429
*******		228-1A(113)	6.55	0.040	2 6246719	0.67	0.045	5.861767279	123,333333
		228-17(113)	0.5	0.045	4 111986	0.62	0.045	5,42432196	31.9148936
		228-37(1383)	0.44	0.045	3.8495188	0.54	0.045	4.724409449	22.7272727
			;						
229A	10/26/93	LAMINATE 300F/3 TONS	0.47	0.045	4 111986	0.68	0.044	6.084466714	47.9690522
,, -		(011)01-622	74.0	0.045	4 9868766	0.74	0.045	6.474190726	29.8245614
		220-34(1388)	0.57	0.043	6 6213314	0.92	0.044	8.231925555	24.3243243
		229-37(1383)	0.6	0.044	5.3686471	0.75	0.044	6.710808876	25
		(000)	• • •						

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	EHO.	1 1 1 1 1 1		A-IEH	AFIEM	AFIER	(70)
230A	10/29/93	LAMINATE 300F/3 TONS							
		230-1A(TTS)	0.29	0.044	2.5948461	0.68	0.044	6.084466714	134.482759
		230·1A(TTS)	0.31	0.043	2.838308	0.59	0.044	5.279169649	85.9970674
		230-3A(138S)	0.45	0.043	4.1201245	0.52	0.044	4.652827487	12.9292929
		230-4A(138S)	0.34	0.044	3.0422334	0.42	0.044	3.758052971	23.5294118
1385									•
231A	10/29/93	LAMINATE 300F/3 TONS							
		231-1A(TTS)	0.41	0.044	3.6685755	1.3	0.044	11.63206872	217.073171
		231·1A(TTS)	0.32	0.044	2.8632785	2.2	0.045	19.24759405	572.22222
		231-3A(138S)	0.49	0.044	4.3843951	0.68	0.044	6.084466714	38.7755102
		231-4A(138S)	0.52	0.044	4.6528275	0.65	0.044	5.816034359	25
232A	10/29/93	LAMINATE 300F/3 TONS							
		232-1A(TTS)	0.34	0.044	3.0422334				
		232-1A(TTS)	0.36	0.044	3.2211883				-
		232-3A(138S)	0.57	0.044	5.1002147	0.71	0.044	6.352899069	24.5614035
		232-4A(138S)	0.58	0.044	5.1896922	0.62	0.044	5.547602004	6.89655172
233A	10/29/93	LAMINATE 300F/3 TONS							
		233-1A(TTS)	0.22	0.045	1.9247594				
		233-1A(TTS)	0.23	0.044	2.0579814				
		233-3A(138S)	0.28	0.044	2.5053686	2.25	0.044	20.13242663	703.571429
		233-4A(138S)	0.35	0.045	3.0621172	1.2	0.044	10.7372942	250.649351
234A	11/7/93	LAMINATE 300F/3 TONS							
		234-1A(TTS)	0.45	0.044	4.0264853				
		234-1A(TTS)	0.46	0.044	4.1159628				
		234-3A(138S)	9.0	0.044	4.4738726	1.05	0.044	9.395132427	110
		234-4A(138S)	0.64	0.044	5.7265569	1.35	0.043	12.36037356	115.843023
		A PARTY OF THE PAR							
235A	11/7/93	LAMINATE 300F/3 TONS							
		235-1A(TTS)	0.46	0.044	4.1159628				
		235-1A(TTS)	0.44	0.044	3.9370079				
		235-3A(138S)	97.0	0.044	6.8002863	99.0	0.044	5.905511811	-13.1578947
		235-4A(138S)	0.68	0.044	6.0844667	0.7	0.044	6.263421618	2.94117647
236A	11/7/93	LAMINATE 300F/3 TONS		0	0000077				
		236-1A(11S)	0.68	0.033	8.1126223				-

			Ж	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(CHM-CM) BEFORE	(OFIM) AFTER	(INCH) AFTER	AFTER AFTER	(%)
NUMBER	שואט	936.1A/TTS)	0.8	0.031	10.16002				
		236-3A(138S)	1.05	0.043	9.6136239	1.3	0.043	11.90258194	23.8095238
		236-4A(138S)	0.95	0.042	8.9051369	1.2	0.044	10.7372942	20.5741627
237A	11/7/93	LAMINATE 300F/3 TONS							
		237-1A(TTS)	0.67	0.043	6.1344076				
		237-1A(TTS)	8.0	0.044	7.1581961				1
		237-3A(138S)	0.67	0.043	6.1344076	96.0	0.044	8.589835361	40.02/13/
		237-4A(138S)	0.49	0.044	4.3843951	1.2	0.044	10.7372942	144.897959
238A	11/7/93	LAMINATE 300F/3 TONS					•		100000
		238-1A	0.42	0.044	3.758053	0.55	0.044	4.921259843	30.952381
		238-2A	0.38	0.045	3.3245844	0.4	0.045	3.499562555	5.26315789
		238-3A	0.36	0.044	3.2211883	0.48	0.044	4.294917681	33.333333
		238-4A	0.34	0.045	2.9746282	9.0	0.045	4.374453193	47.0588235
239A	11/10/93	LAMINATE 300F/3 TONS	7	340	4 015748	0.64	0.045	5.599300087	39.4335512
		Z39-1A	0.459	0.040	4100140	10.0	0.00	3 937007874	15 3846154
		239-2A	0.39	0.045	3.4120/35	0.43	0.043	0.937007674	75 555556
		239-3A	0.45	0.045	3.9370079	0.79	0.045	6.911030045	75.5555556
		239-4A	0.44	0.044	3.9370079	0.58	0.044	5.189692198	31.8181010
240A	11/16/93	LAMINATE 300F/3 TONS							
2017		240-1A	0.54	0.045	4.7244094	0.64	0.045	5.599300087	18.5185185
		240-2A	99.0	0.044	5.9055118				
		240-3A	9.0	0.045	5.2493438	0.84	0.044	7.516105941	43.1818182
		240-4A	0.77	0.044	6.8897638				
241A	11/15/93	LAMINATE 300F/3 TONS							
		241-1A	0.72	0.077	3.681358				
		241-2A	0.78	0.077	3.9881378	3.9881378 FOR BATTERY BUILD	'BUILD		
		241-3A	0.79	0.076	4.0924161				
A 0 4 0	11/18/93	LAMINATE 300F/3 TONS							
7.457		242-1A	0.59	0.066	3.5194464				
		242-2A	0.64	0.066	3.8177046	3.8177046 FOR BATTERY BUILD	/BUILD		
		242-3A	0.67	0.067	3.9370079				
		242-4A(NO PB)	0.72	990.0	4.2949177				
243A	11/18/93	LAMINATE 300F/3 TONS							
		243-1A	0.38	0.066	2.2667621				-

(OHM-CM) CHANGE AFTER (%)							-																														
THICKNESS (INCH) AFTER	BUILD			BUILD	'H NEG PASTE					0.041	0.041	0.041	0.041 0.041 0.041 0.04	0.041 0.041 0.041 0.04																							
RESISTANCE (OHM) AFTER	2.4679751 FOR BATTERY BUILD			3.3404915 - FOR BATTERY BUILD	2,9229301 ITIVE SIDE WITH NEG PASTE					0.62	0.62	0.62 0.71 0.77	0.62 0.71 0.77	0.62 0.71 0.77	SAME																						
(OHM-CM) BEFORE	2.4679751	2.445717	2.4092138	3.3404915	2.9229301	2.9825817	2.9229301			5.6654504	5.6654504	5.6654504 5.1556055 6.3376224	5.6654504 5.1556055 6.3376224 6.7217208	5.6654504 5.1556055 6.3376224 6.7217208	5.6654504 5.1556055 6.3376224 6.7217208 12.432656	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142	5.6654504 5.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622 6.1023622	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622 6.1023622	5.6654504 6.376224 6.7217208 6.7217208 12.432656 9.1863517 11.189391 8.7028595 6.6929134 7.0866142 6.1023622 6.929134 7.0866142 8.74969 8.748964 9.4488189	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622 6.929134 7.0866142 9.4488189	5.6654504 6.376224 6.376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 6.6929134 7.0866142 6.1023622 10.774969 8.7489064 9.4488189	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622 10.774969 8.7489064 9.4488189 10.061242	5.6654504 6.376224 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 7.0866142 6.1023622 10.774969 8.7489064 9.4488189 10.061242 17.322835 7.8740157	5.6654504 5.1556055 6.3376224 6.7217208 6.7217208 12.432656 9.1863517 11.189391 8.7028595 5.6102362 6.6929134 7.0866142 6.1023622 6.929134 7.0866142 6.1023624 10.774969 8.7489064 9.4488189 10.061242 17.322835 7.8740157 7.8740157	5.6654504 6.1556055 6.3376224 6.7217208 6.7217208 12.432656 9.1863517 11.189391 8.7028595 6.6929134 7.0866142 6.929134 7.0866142 6.1023622 10.774969 8.7488189 10.061242 7.8740157 7.8740157 7.8740157	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 6.6929134 7.0866142 6.1023622 6.929134 7.0866142 10.774969 8.7489064 9.4488189 10.061242 7.8740157 7.8740157 7.8740157	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.189391 8.7028595 6.6929134 7.0866142 6.9229134 7.0866142 6.1023622 10.774969 8.7489064 9.4488189 10.061242 7.8740157 7.8740157 7.8740157	5.6654504 6.1556055 6.3376224 6.7217208 12.432656 9.1863517 11.1893517 11.1893517 11.1893517 11.0866142 6.6929134 7.0866142 6.1023622 6.929134 7.0866142 10.774969 8.7489064 9.4488189 10.061242 7.8740157 7.8740157 7.8740157 7.8740157 7.8740157
(OHM) (INCH) REFORE PEROPE	0.067	990.0	0.067	996 0	0.066	990.0	990:0			0.041	0.041	0.041	0.041 0.042 0.041 0.041	0.041 0.042 0.041 0.041	0.041 0.042 0.041 0.041	0.041 0.042 0.041 0.041 0.019	0.041 0.042 0.041 0.041 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019 0.019 0.02 0.02	0.041 0.042 0.041 0.041 0.019 0.019 0.019 0.012 0.02 0.02	0.041 0.042 0.041 0.041 0.019 0.019 0.02 0.02 0.02	0.041 0.041 0.041 0.041 0.019 0.019 0.019 0.02 0.02 0.02	0.041 0.041 0.041 0.041 0.019 0.019 0.019 0.02 0.02 0.02 0.02	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.041 0.041 0.041 0.041 0.019 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.019 0.019	0.041 0.042 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.041 0.042 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.019 0.018 0.018	0.041 0.041 0.041 0.041 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.041 0.041 0.041 0.041 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0
(OHIM)	0.42	0.41	0.41	0.56	0.00	0.5	0.49			0.59	0.59	0.59 0.55 0.66	0.59 0.55 0.66 0.7	0.59 0.55 0.66 0.7	0.59	0.59 0.55 0.66 0.7 0.6	0.59 0.55 0.66 0.7 0.6 0.42	0.59 0.66 0.7 0.7 0.6 0.42 0.54	0.59 0.55 0.66 0.7 0.42 0.54	0.59 0.55 0.66 0.7 0.42 0.54 0.54	0.59 0.55 0.66 0.7 0.42 0.54 0.54	0.59 0.66 0.7 0.42 0.54 0.54 0.54 0.54 0.34	0.59 0.66 0.7 0.42 0.54 0.54 0.54 0.34	0.59 0.66 0.7 0.42 0.54 0.54 0.34 0.38 0.36	0.59 0.66 0.7 0.42 0.54 0.54 0.35 0.34	0.59 0.66 0.7 0.42 0.42 0.54 0.34 0.34 0.36	0.59 0.66 0.7 0.42 0.54 0.54 0.34 0.38 0.36 0.36	0.59 0.66 0.7 0.6 0.42 0.54 0.285 0.34 0.36 0.37 0.52 0.36	0.59 0.66 0.7 0.66 0.42 0.54 0.52 0.34 0.36 0.36 0.37 0.67 0.70 0	0.59 0.66 0.7 0.6 0.42 0.54 0.285 0.34 0.36 0.37 0.52 0.48 0.48	0.59 0.66 0.7 0.42 0.42 0.54 0.285 0.38 0.38 0.38 0.48 0.38 0.38 0.48	0.59 0.66 0.7 0.42 0.42 0.54 0.42 0.36 0.38 0.38 0.48 0.48 0.38 0.38 0.48 0.38 0.38 0.48 0.38 0.38 0.38 0.48 0.38 0	0.59 0.66 0.7 0.7 0.42 0.54 0.54 0.34 0.38 0.38 0.98 0.	0.59 0.66 0.66 0.42 0.54 0.54 0.34 0.38 0.38 0.38 0.48 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.37 0.36 0.37 0.37 0.38 0.37 0.38	0.59 0.66 0.66 0.42 0.54 0.54 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	0.59 0.66 0.66 0.42 0.54 0.54 0.34 0.38 0.38 0.38 0.38 0.38 0.38	0.59 0.66 0.66 0.42 0.54 0.54 0.52 0.34 0.36 0.36 0.48 0.38 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.38 0.48 0.36 0.48 0.36 0.48 0.36 0.48 0.36 0.48 0.36 0.37 0.48 0.36 0.37 0.48 0.36 0.37 0.48 0.36 0.37 0.38
MATERIAL	243.2A	243-3A	242-4A(NO PB)	LAMINATE 300F/3 TONS	244-24	244:3A	244-4A(NO PB)		LAMINATE 300F/3 TONS	LAMINATE 300F/3 TONS 245·1A	LAMINATE 300F/3 TONS 245-1A 245-2A	LAMINATE 300F/3 TONS 245-1 A 245-2 A 245-3 A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-4A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-4A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 245-1A 245-1A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 245-1A 246-1A 246-2A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 245-4A 246-1A 246-2A 246-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-2A 246-3A 246-3A 246-4A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-2A 246-3A 246-4A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-1A 246-2A 246-3A 246-3A 246-3A 246-3A 246-3A 246-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-1A 246-2A 246-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-2A 246-2A 246-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-3A 247-1A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-4A 246-2A 246-3A 247-1A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-3A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-2A 247-3A 247-3A 247-3A 247-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-2A 246-3A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-4A 246-2A 246-2A 246-3A 246-3A 246-4A 247-1A 247-1A 247-1A 247-2A 247-4A 247-4A 247-4A 247-4A 247-8 248-8	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-4A 246-3A 246-3A 246-3A 246-4A 247-1A 247-1A 247-1A 247-3A 248-3A 248-3A 248-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-2A 246-3A 246-3A 246-3A 246-3A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-1A 247-2A 247-3A 247-3A 247-3A 247-3A 247-4A 247-4A 247-4A 247-4A 247-4A 247-4A 248-3A 248-1A 248-3A 248-4A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-1A 246-1A 246-2A 246-3A 246-3A 246-3A 247-1A 247-1A 247-1A 247-3A 247-3A 247-4A 247-4A 248-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-1A 246-2A 246-3A 246-3A 246-3A 246-3A 247-4A 247-4A 247-4A 248-2A 248-2A 248-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-4A 246-1A 246-2A 246-2A 246-3A 246-3A 246-3A 247-4A 247-4A 248-2A 248-2A 248-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-3A 246-3A 247-2A 247-3A 247-3A 247-3A 247-3A 247-3A 248-1A 248-3A 248-3A 248-3A 248-3A 248-3A 248-3A 249-3A 249-2A 249-2A 249-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 246-1A 246-2A 246-2A 246-3A 246-3A 247-1A 248-1A 248-1A 248-1A 248-1A 248-1A 249-2A 249-3A 249-3A 249-3A	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-2A 246-2A 246-2A 246-3A 247-2A 247-2A 247-2A 247-2A 247-3A 247-4A 248-1A 248-1A 248-1A 248-1A 248-1A 248-1A 248-3A 248-3A 249-3A 249-3A 249-3A 249-3A 249-3A	LAMINATE 300F/3 TONS 245-1A 0.55 245-3A 0.65 245-3A 0.65 245-3A 0.05 246-1A 0.7 246-1A 0.4 246-1A 0.4 246-2A 0.4 246-3A 0.3 247-1A 0.2 247-1A 0.3 247-3A 0.3 247-4A 0.3 247-4A 0.3 248-2A 0.3 248-3A 0.3 249-3A 0.3	LAMINATE 300F/3 TONS 245-1A 245-2A 245-3A 245-3A 245-4A 246-2A 246-2A 246-3A 247-1A 247-2A 247-2A 247-2A 247-2A 247-4A 247-4A 247-4A 247-4A 248-1A 248-1A 248-1A 248-1A 248-1A 248-1A 248-1A 248-2A 248-3A 249-3A
TEST				11/18/93				12/1/93) - 1	2)) } - - - - -	3		12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93	12/13/93			
SAMPLE	T COMPANY			244A				245A							246A	246A	246A	246A	246A	246A 247A	246A 247A	246A 247A	246A 247A	246A 247A	246A 247A 248A	246A 247A 248A	246A 247A 248A	246A 247A 247A	246A 247A 248A	246A 247A 248A 249A	246A 247A 248A 249A	246A 247A 248A 249A	246A 247A 248A 248A	246A 247A 248A 249A	246A 247A 248A 249A	246A 247A 248A 249A	246A 247A 248A 249A 250A

Sample Number	TEST DATE	MATERIAL COMPOSITION	RESISTANCE (OHM) BEFORE	THICKNESS (INCH) BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
251A	1/5/94	LAMINATE 300F/3 TONS 251·1A	0.19	0.041	1.8244671	0.24	0.041	2.304589975	26.3157895
		251·2A	0.225	0.041	2.1605531	5 N N	7		
252A	1/7/94	LAMINATE 300F/3 TONS 252-1A	0.15	0 041	1.4403687	0.195	0.041	1.872479355	30
		252-2A	0.125	0.042	1.1717285	0.18	0.042	1.687289089	44
253A	1/7/94	LAMINATE 300F/3 TONS	0.15	0.019	3.1081641	0.245	0.02	4.822834646	55.1666667
		253-2A(30 TONS)	0.155	0.011	5.547602	0.11	0.01	4.330708661	-21.9354839
254A	1/12/94	LAMINATE 300F/3 TONS	0.38	0.021	7.1241095	0.32	0.021	5.999250094	-15.7894737
		254-1A	4.0	0.021	7.4990626	0.48	0.021	8.998875141	20
		254-3A	0.46	0.02	9.0551181	0.64	0.02	12.5984252	39.1304348
		254-4A	0.5	0.021	9.3738283	9.0	0.021	11.24859393	20
255A	1/20/94	LAMINATE 300F 3 TONS/30 TONS	~ C	9100	7 3818898	0.265	0.016	6.520669291	-11.6666667
		255-17(3 10NS)	0.29	0.019	6.0091173	0.28	0.019	5.801906341	-3.44827586
		255-3A(30 TONS)	0.28	0.011	10.021475	0.32	0.011	11.45311382	14.2857143
		255-4A(30 TONS)	0.235	0.011	8.4108805	0.295	0.011	10.5583393	25.5319149
256A	1/20/94	LAMINATE 300F/3 TONS NO SHIM							
		256-1A	0.44	0.018	9.623797	0.79	0.018	17.27909011	79.5454545
		256-2A	0.62	0.019	12.847078	1.3	0.019	26.9374223	109.677419
		256-3A	0.41	0.019	8.4956486	0.78	0.019	16.16245338	90.2439024
		256-4A	0.45	0.019	9.3244923	6.0	0.019	18.64898467	100
257A	1/24/94	LAMINATE 300F/3 TONS							
		257-1A	0.76	0.04	7.480315				
		257-2A	0.74	0.04	7.2834646		1		
		257-3A	0.8	0.04	7.8740157		'Y #257 (12V)		
		257-4A	6.0	0.041	8.6422124	FULL PB SHEET			
		257-5A	0.77	0.04	7.5787402				

LAMINATE 300F/3 TONS 045", 031" SHIM
258-1A
258-2A
STABILITY TESTING
258-4A
258-5A
LAMINATE 300F/3 TONS 045" 031" SHIM
259-1A
259.2A
259-3A
259-4A
259-5A
259-6A
STABILITY TESTING
259-7A
259-8A
LAMINATE 300F/3 TONS
0. 160., 0.40.
Z60-1A
260-3A
STABILITY TESTING
260-4A
260.5A
LAMINATE 300F/3 TONS 045" 031" SHIM
261-2A
261-3A
STABILITY TESTING
261-4A
261-5A
LAMINATE 375F/3 TONS

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHIM)	(INCH)	(OHM-CM) BEFORE	(OHM) AFTER	(INCH) AFTER	(OHM-CM) AFTER	CHANGE (%)
263A	2/1/94	LAMINATE 300F/3 TONS							
		0.045" SHIM							-
		263-1A	0.5	0.043	4.5779161 /	NTERY #263 6	4.5779161 ATTERY #2636V-FULL PB SHEET	ET	
		263.2A	0.49	0.043	4.4863578	=			
264A	2/4/94	LAMINATE 300F/3 TONS							
i		0.031" SHIM							
		264·1A	0.46	0.034	5.3265401	5.3265401 MAKE BATTERY #264 4V	Y #264 4V		
		264·2A	0.41	0.034	4.7475683	4.7475683 3STRATE CRACKED	ŒD		
265A	2/4/94	LAMINATE 300F/3 TONS							
1		0.031" SHIM							
		265-1A	0.3	0.033	3.5790981	MAKE BATTERY #265-6V	Y #265-6V		
-		265-2A	0.28	0.033	3.3404915	E			
		265-3A	0.33	0.032	4.0600394	DELAMINATED AT CORNER	AT CORNER		
		265-4A	0.33	0.032	4.0600394	4.0600394 MAKE BATTERY #265-4V	Y #265-4V		
		265-5A	0.33	0.032	4.0600394	4.0600394 MINATE CRACKED	ED		
266A	2/18/94	LAMINATE 300F/3 TONS							
		0.051" SHIM							
		266-1A	0.36	0.046	3.0811366	0.37	0.045	3.237095363	5.0617284
		266-2A	0.38	0.045	3.3245844	0.48	0.044	4.294917681	29.1866029
		266-3A	0.41	0.046	3.5090722	0.84	0.045	7.349081365	109.430894
		266-4A	0.4	0.045	3.4995626	0.46	0.045	4.024496938	15
267A	3-3-94	LAMINATE 300F/3 TONS							
		267-1A(C)	0.52	0.039	5.2493438	0.73	0.044	6.531853973	W/ PB SHEET
		267-2A(P)	0.61	0.037	6.4907427	9.0	0.041	5.761474938	=
		267-3A(P)	0.63	0.038	6.5271446	0.55	0.041	5.281352026	=
		267-4A(P)	0.45	0.036	4.9212598	0.56	0.041	5.377376608	<u></u>
		267-5A(P)	0.43	0.036	4.7025372	0.56	0.039	5.653139511	=
		267-6A(P)				0.54	0.04	5.31496063) PB
		267-7A(P)				0.5	0.04	4.921259843	=
		267-8A(C)				0.4	0.04	3.937007874	
		267-9A(C)				0.37	0.04	3.641732283	:
		267-10A(C)				0.53	0.041	5.089302862	=
		267-11A(C)				0.56	0.041	5.377376608	=
		267-12A	0.45	0.036	4.9212598	0.44	0.037	4.681847202	-4.86486486
		267-13A	0.43	0.036	4.7025372	0.46	0.036	5.030621172	6.97674419
268A	3-3-94	LAMINATE 300F/3 TONS							
		268-1A	0.57	0.042	5.3430821	99.0	0.045	5.774278215	W/ PB SHEET
_									

PERCENT	(%)	=	=	·		IINATED, PB SHE	=	=		=	=	1,48601399	14.0151515		25	36.3636364	23.6363636	66.6666667		69 7659574	10000000	18.9320366		10	31.3962873		5.40540541	-8.82352941	66.7346939	-7.77338603		100.493827	96.969697	19.444444	13.8888889		141.335045	111.764706	66.666667	43.9683586	6	209.52381	227.683616
RESISTIVITY	AFTER A	5.5631633	4.964053406	4.878466279	5.193499749	4.019028871	3.772965879	4.017354973		3.772965879	8.223972003	4.831782391	5.010737294		11.81102362	8.436445444	9.561304837	11.24859393		7 666203088	7.000283000	17.53758053	1	9.623797025	13.87326584		7.677165354	6.102362205	8.464566929	6.263421618		8.457276174	9.139482565	6.046119235	5.764904387		9.026310736	7.086614173	6.241597849	4.993278279		65.6167979	66.72894702
THICKNESS	AFTER	0.046	0.046	0.046	0.047	0.048	0.048	0.049		0.048	0.045	0.044	0.044		0.027	0.028	0.028	0.021		0	0.010	0.022		0.018	0.021		0.02	0.02	0.02	0.022		0.027	0.028	0.028	0.028		0.041	0.04	0.041	0.041		0.054	0.059
RESISTANCE	(CINV) AFTER	0.65	0.58	0.57	0.62	0.49	0.46	0.5		0.46	0.94	0.54	0.56		0.81	9.0	0.68	9.0		u c	0.35	0.98	ALASTIC CRACKED	0.44	0.74		0.39	0.31	0.43	0.35		0.58	0.65	0.43	0.41		0.94	0.72	0.65	0.52		6	10
RESISTIVITY	CHM-CM)	5.2493438	4.7423049	4.3843951	5.3149606				ISTERING			4.7610328	4.3947995		9.4488189	6.1867267	7.7334083	6.7491564			20.55993			8.7489064	10.558339		7.2834646	6.6929134	5.076668	6.7913386		4.2182227	4.640045	5.0618673	5.0618673		3.7401575	3.3464567	3.7449587	3.4683165		21.199273	20.363834
<u> </u>		0.045	0.044	0.044	0.04				MOVED FOR Q.C. DUE TO BLISTERING			0.043	0.043		0.025	0.028	0.028	0.021			0.018	0.022	0.02	0.018	0.022		0.05	0.05	0.019	0.02		0.028	0.028	0.028	0.028		0.04	0.04	0.041	0.042		0.052	0.058
RESISTANCE	(CHIM)	90	0.53	0.49	0.54				MOVED FOR			0.52	0.48		9.0	0.44	0.55	0.36			0.94	0.824	0.745	4.0	0.59		0.37	0.34	0.245	0.345		0.3	0.33	0.36	0.36		0.38	0.34	0.39	0.37		2.8	ღ
į	MATERIAL	268-2A	268-3A	268.4A	268-5A	268-6A	268-7A	268-8A	268·9A	268-10A	268-11A	268·12A	268·13A	LAMINATE 300F/3 TONS	269-1A	269-2A	269-3A	269-4A	ORCH CLASS AND THE STATE OF THE	LAMINATE 300F/3 LONS	270-1A	270-2A	270-3A	270-4A	270-5A	LAMINATE 300F/3 TONS	271-1A	271-2A	271-3A	271-4A	LAMINATE 300F/3 TONS	272-1A	272-2A	272-3A	272-4A	LAMINATE 300F/3 TONS	273-1A	273-2A	273-3A	273-4A	LAMINATE 300F/3 TONS	274-1A	274-2A
1	LESI													3/3/94						3/4/94						3/10/94					3/17/94					3/17/94					4/28/94		
!	SAMPLE													269A					, octo	Z/0A	· · · ·					271A					272A	_ **-				273A					274A		

SAMPLE	1EST	MATERIAL	RESISTANCE THICKNESS (OHM) (INCH)		RESISTIVITY (OHM-CM) REFORE	RESISTANCE (OHM)	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
NOMEST		CANITONIA		2 					
275A	4/28/94	LAMINATE 300F/3 TONS 275-1A	2.65	0.044	23.711525	24.5	0.044	219.2197566	824.528302
		275-2A	1.95	0.042	18.278965	90	0.044	447.3872584	2347.55245
276A	4/28/94	LAMINATE 300F/3 TONS 276-1A	3 2	90.0	20.997375	8.9	0.064	41.83070866	99.21875
		276.2A	38	90 0	24.934383	S	0 062	31.7500635	27.3344652
277A	5/2/94	LAMINATE 300F/3 TONS							
		277-1A	0.58	0.047	4.8584352	4.8584352)R 4V BATTEHY 277-1 C	7 277-1 C		-
		277-2A	Y :	0.041	۷ : 2 :	JH 4V BATTENY 2/7-2 C	7 2//-2 C		
		277-3A	Ϋ́	0.042	A A	H 6V BALLEHY 2/7-6V C	2//-pv C		
		277-4A	Y V	0.042	ΑΝ	:			
278A	5/2/94	LAMINATE 300F/3 TONS							
		278-1A	Ą V	0.04	NA NA	JR 4V BATTERY 278-1 C	Y 278-1 C		
		278-2A	Y Y	0.039	¥ V	Ë	′ 278-6V C		
		278-3A	ΝΑ	0.04	∀	=	=		
									-
279A	5/2/94	LAMINATE 300F/3 TONS							
		279-1A	¥ Z	0.042	Y :	OH 4V BATTERY 279-1 C	Y 2/9-1 C		
		279-2A	¥ :	0.039	Υ :	JH 4V BATTEHY Z/9-Z C	7 2/9-2 C		
		279-3A 279-4A	K K	0.04	Y Y	H by BALLER	0 40-6/2 "		
			:						
280A	5/9/94	LAMINATE 300F/3 TONS							
		280-1A	0.38	0.035	4.2744657		0.037	29.26154501	584.555145
		280-2A	0.31	0.039	3.1294165	_	0.04	79.72440945	2447.58065
		280-3A	0.28	0.035	3.1496063		0.037	31.92168546	913.513514
		280-4A	0.3	0.035	3.3745782	2.3	0.037	24.47329219	625.225225
V + 000	101010	TONS 1 TONS							
Z81A	1012110	281-1A	0.43	0.033	5.1300406	5.1300406 JR 4V BATTERY 281-1 C	IY 281-1 C		
		281-2A	0.41	0.035	4.6119235	4.6119235 JR 4V BATTERY 281-2 C	IY 281-2 C		_

			RESISTANCE THICKNESS	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM) AFTER	CHANGE (%)
NUMBER	DAIE	COMPOSITION	DEPOSITE OF STREET	1000 1000	3 4738305 #	3 4738305 JB 6V BATTERY 281-6V C	281-6V C) (
		281-3A 281-4A	0.36	0.034	4.1685966	-)		4.
282A	5/13/94	LAMINATE 300F/3 TONS							
		282-1A	0.4	0.035	4.4994376	4 4994376 JR 4V BATTERY 282-1 C	282-1 C		
		282-2A	0.42	0.037	4.469036	4.469036 JR 4V BATTERY 282-2 C	282-2 C		
		282-3A	0.38	0.036	4.1557305	4.1557305 IR 6V BATTERY 282-6V C	282-6V C		
		282.4A	0.4	0.036	4.3744532	=			
		7,3,4							
283A	5/13/94	LAMINATE 300F/3 TONS							
		283.1A	0.52	0.025	8.1889764	2.85	0.025	44.88188976	448.076923
		283-2A	9.0	0.025	7.8740157	2.35	0.025	37.00787402	370
		283-3A	0.45	0.025	7.0866142	3.3	0.025	51.96850394	633.333333
		283-4A	0.36	0.024	5.9055118	2.5	0.024	41.01049869	594.44444
284A	5/25/94	LAMINATE 300F/3 TONS							
		284-1A	9.0	0.041	4.8012291		0.041	10.56270405	120
		284-2A	0.54	0.041	5.1853274	1.4	0.041	13.44344152	159.259259
		284-3A	0.55	0.041	5.281352	1.6	0.041	15.36393317	190.909091
		284-4A	0.7	0.04	6.8897638	1.6	0.041	15.36393317	122.996516
285A	6/2/94	LAMINATE 300F/3 TONS							
		285·1A	0.89	0.045	7.7865267	7.7865267 OR 4V BATTERY 285-1	IY 285-1		
		285-2A	1.15	0.046	9.8425197				
		285-3A	1.25	0.048	10.252625				
		285-4A	1.35	0.047	11.308427				
1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1									
286A	6/2/94	LAMINATE 300F/3 TONS							
		286-1A	1.1	0.047		DONT USE			
		286-2A	1.25	0.049		OR 4V BATTERY 286-2	1Y 286-2		
		286-3A	1.05	0.05	8.2677165				
		286-4A	1.25	0.051	9.6495291	DON'T USE			
287A	6/3/94	LAMINATE 300F/3 TONS							
		287-1A	6.0	0.047	7.5389512	DON'T USE			
		287-2A	9.0	0.043	5.4934994	5.4934994 OR 4V BATTERY 287-2	1Y 287-2		
		287-3A	0.595	0.044		OR 4V BATTERY 287-3	1Y 287-3		
		287-4A	0.53	0.043	4.8525911				
288A	6/15/94	LAMINATE 300F/3 TONS							
		288-1A	99.0	0.041	6.3376224	6.3376224 E, SUBSTRATE CRACKED	CRACKED		

PERCENT CHANGE (%)			·																		
RESISTIVITY (OHM-CM) AFTER																					
THICKNESS (INCH) AFTER	Y 288-2				Y 289·1					Y 290-1	/ 290-6V										
RESISTANCE (OHM) AFTER	7.4990626 OR 4V BATTERY 288-2				5.511811 OR 4V BATTERY 289-1					14.873141 OR 4V BATTERY 290-1	14.504766 JR 4V BATTERY 290-6V	=									
	7.4990626	5.1853274	8.623922		5.511811 (5.1181102	5.0893029	5.4133858		14.873141	14.504766	12.847078	12.992126	10.23622	9.6456693	9.1172814	10.360547	9.3738283	9.3738283	9.7487814	10.123735
THICKNESS (INCH) BEFORE	0.042	0.041	0.042		0.04	0.04	0.041	0.04		0.018	0.019	0.019	0.02	0.02	0.02	0.019	0.019	0.021	0.021	0.021	0.021
RESISTANCE THICKNESS RESISTIVITY (OHM) (INCH) (OHM-CM) BEFORE BEFORE BEFORE	0.8	0.54	0.92		0.56	0.52	0.53	0.55		0.68	0.7	0.62	99.0	0.52	0.49	0.44	0.5	0.5	0.5	0.52	0.54
MATERIAL. COMPOSITION	288-2A	288-3A	288-4A	LAMINATE 300F/3 TONS	289-1A	289-2A	289-3A	289-4A	LAMINATE 300F/3 TONS	290-1A	290-2A	290-3A	290-4A	290-5A	290-6A	290-7A	290-8A	290-9A	290-10A	290-11A	290-12A
TEST	1.00			6/16/94					6/23/94												
SAMPLE	LICANIDA I			289A					290A											• •	

APPENDIX B

DELIVERABLE DATA

BUILD ID

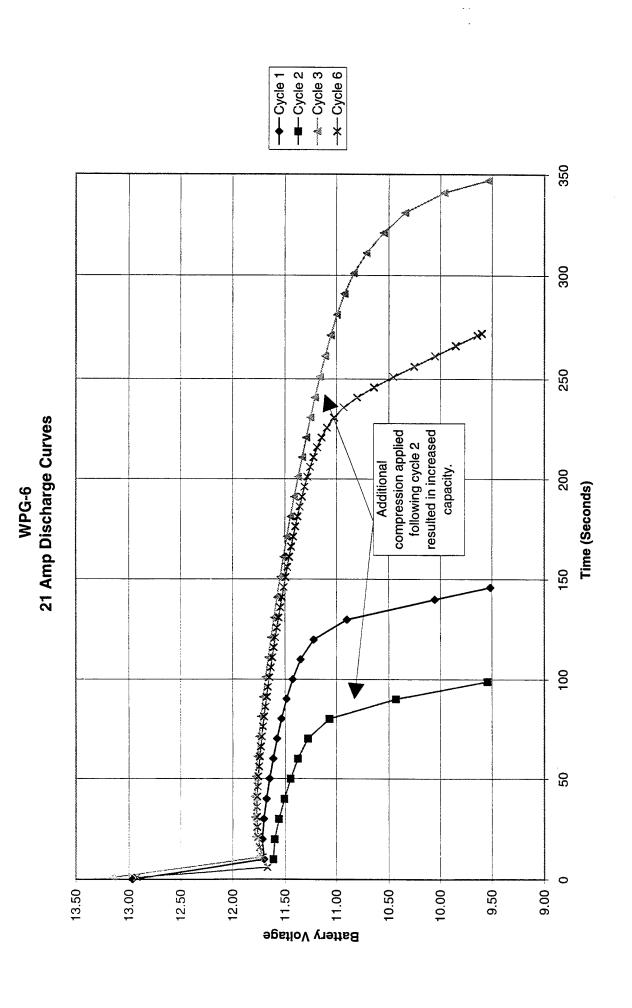
WPG-6

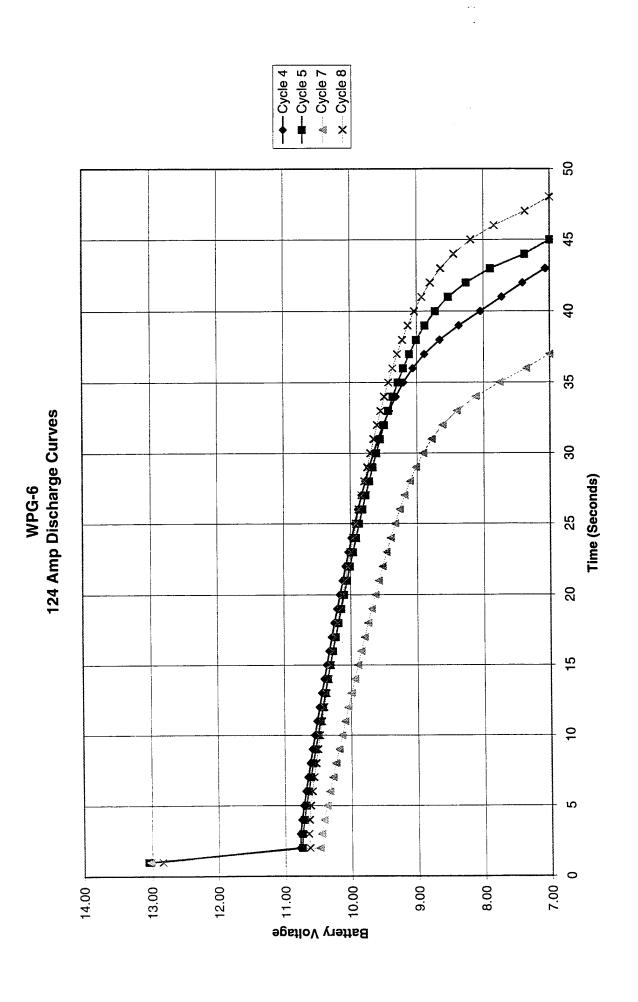
Description 12 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016" thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.35 g/cc
Negative Paste Density	3.75 g/cc

Plate ID F	TE D2		D5		D7		D8		D9	£	010	NTE D4
Pb Mass (g.)	260.90	15	8.80	16	0.20	16	32.60	15	8.10	16	1.60	261.90
AM Mass (g.)	51.70	10	104.30		104.20		106.00		103.50		104.80	
Dry AM (g.)	51.70	52.19	52.11	52.52	51.68	52.92	53.08	52.26	51.24	51.94	52.86	53.40
Sep. Mass (g.) C	`ell 1	3.54	Cell 2	3.52	Cell 3	3.53	Cell 4	3.53	Cell 5	3.52	Cell 6	3.51


Termination	Copper stud soldered to terminal electrode									
Containment Type	Solvent bonded ABS. Container core thickness = 0.668"									
Completed Mass	3.5121 kg									


FORMATION

Acid Gravity	Chilled 1.265	
% Sodium Sulfate	1.5	
Method of Fill	Vacuum	
Time	27H:55M:04S	
Amps	1.0	
Voltage Limit	16.32	
Amp Hours	20.62	
Watt Hours	311.8	
Internal Resistance	13.5 m Ω	

CYCLING HISTORY

				- 100	Disc	harge		Recharge				
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rchg
1	11/15/95	13.5	12.966	21	9.6	0.85	9.6	0.5	15.30	0.935	12.92	110
2	11/16/95	16.5	NA	21	9.6	0.57	6.4	0.1	14.40	NA	NA	NA
3	11/20/95	10.5	13.158	21	9.6	2.01	22.8	0.5	14.40	2.211	29.48	110
4	11/21/95	8.2	13.019	124	7.2	1.44	14.1	0.5	14.40	1.584	21.22	110
5	11/22/95	8.6	13.05	124	7.2	1.51	14.7	0.5	14.40	1.661	22.24	110
6	11/30/95	10.0	12.922	21	9.6	1.58	17.9	0.5	14.40	1.738	23.20	110
7	12/1/95	9.8	13.017	124	7.2	1.23	11.7	0.5	14.40	1.353	18.12	110
8	12/11/95	8.8	12.84	124	7.2	1.61	15.6	0.5	14.40	1.771	23.42	110

BUILD ID

WPG-8

Description

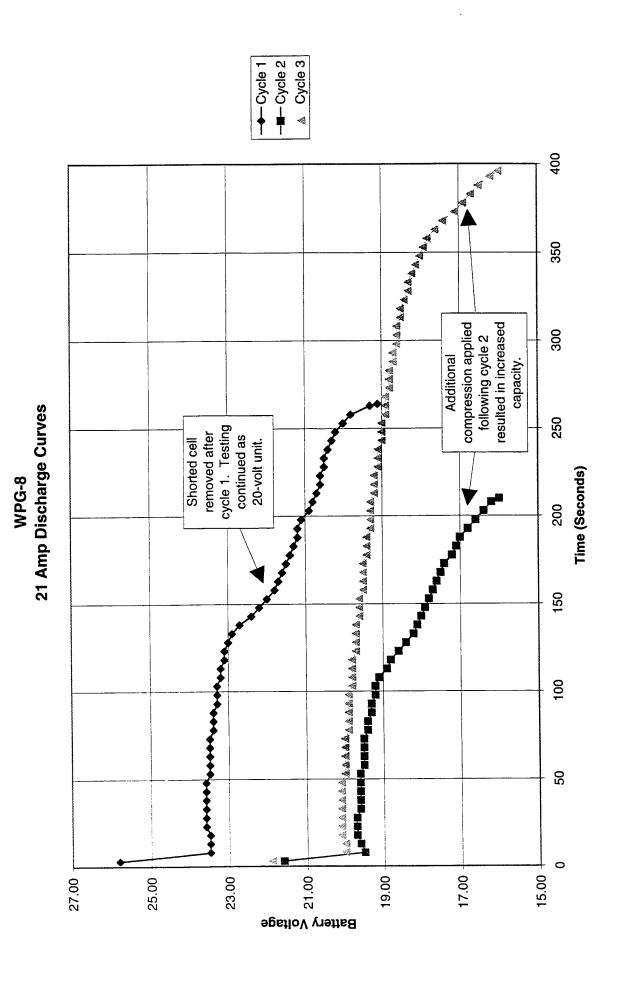
24 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016° thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.51 g/cc
Negative Paste Density	3.83 g/cc

Plate ID P	TE D54	D14	ļ .	D1	5	D1	7	D18	3	D20)	D2	1
Pb Mass	258.70	162.90		162.20		161.90		162.80		163.10		162.00	
AM Mass	52.10	106.00		105.30		104.70		104.80		105.40		103.60	
Dry AM	52.10	52.71	53.29	52.41	52.89	52.65	52.05	52.33	52.47	52.37	53.03	51.85	51.75
Sep. Mass C	ell 1	3.52	Cell 2	3.53	Cell 3	3.48	Cell 4	3.52	Cell 5	3.48	Cell 6	3.47	Cell 7

Plate ID	.D2	2	D23	1	D2:	5	D2(5 I	D2	7	NTE D57
Pb Mass	160.40		163.10		160.90		161.90		162.80		258.50
AM Mass	103.20		102.00		106.00		101.70		103.30		54.00
Dry AM	52.05	51.15	51.24	50.76	51.22	54.78	50.75	50.95	51.51	51.79	54.00
Sep. Mass	3.49	Cell 8	3.46	Cell 9	3.49	Cell 10	3.50	Cell 11	3.51	Cell 12	3.50


Termination	Copper stud soldered to terminal electrodes
Containment Type	Solvent bonded ABS. Container core thickness = 1.153".
Containment Mass	5.5360 kg


FORMATION

Acid Gravity	Chilled 1.265	
% Sodium Sulfate	1.5	
Method of Fill	Vacuum	
Time	20H:37M:03S	
Amps	1.0	
Voltage Limit	32.64	
Amp Hours	20.62	
Watt Hours	594.0	
Internal Resistance	14.0 mΩ	

CYCLING HISTORY

				70. K	Discl	harge				Recharge)	
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rchg
1	1/16/96	14.5	25.80	21	19.2	1.50	31	0.5	30.60	1.65	44	110
	1/16/96	Two shorter	d bipolar el	ectrodes re	moved. Co	ntinue cycli	ng as 20-vo	It nominal t	attery.			
2	1/18/96	17.5	21.60	21	16.0	1.20	20	1.0	25.50	1.32	29	110
3	1/18/96	12.5	21.90	21	16.0	2.29	41	0.1	25.50	2.51	50	110
4	1/19/96	12.5	22.00	124	12.0	1.48	23	0.1	25.50	1.62	32	110
	1/23/96	Two good b	pipolar elec	trodes adde	d to stack t	o achieve 2	4-volt modu	ıle.			•	-
5	1/24/96	17.0	26.10	124	14.4	1.27	23	0.1	30.60	1.39	28	110
6	1/26/96	16.0	26.00	124	14.4	1.24	23	0.1	30.60	1.36	27	110

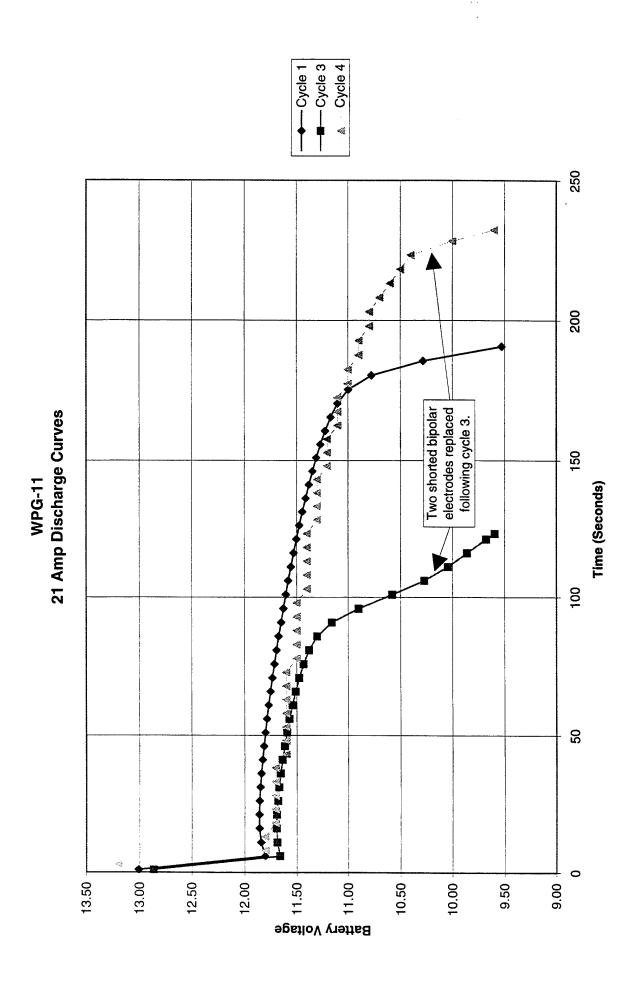
BUILD ID WPG-11

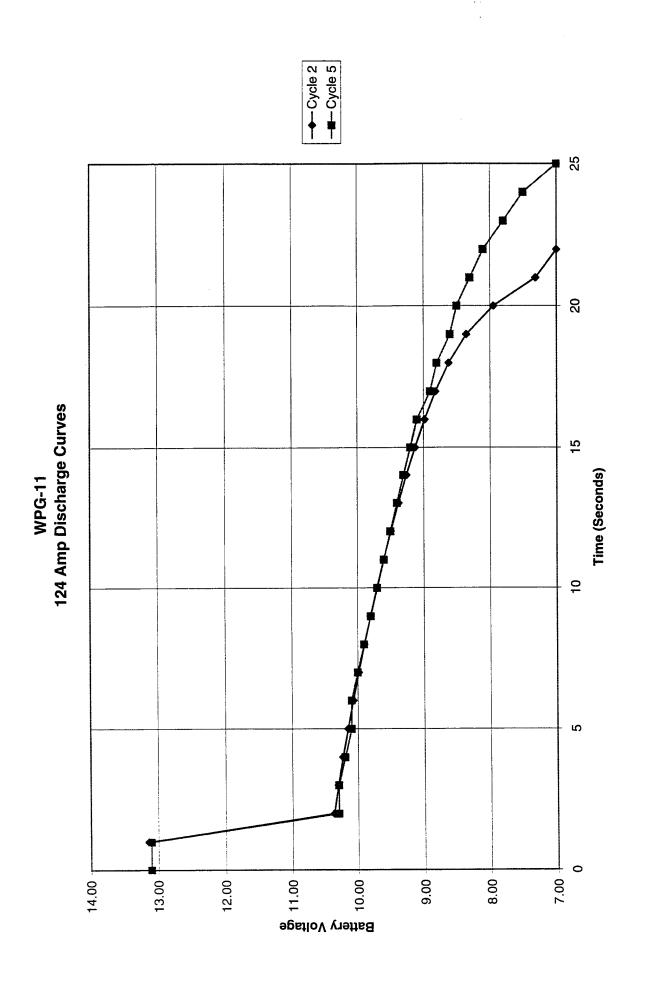
Description 12 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016" thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.40 g/cc
Negative Paste Density	3.75 g/cc

Plate ID	PTE D72		366	- 1	067	1	D69		D64	E	265	NTE D74
Pb Mass (g.)	261.03	16	50.07	16	50.71	16	3.42	16	53.13	16	4.39	258.98
AM Mass (g.)	50.97	10	102.23		102.49		102.98		101.27		101.91	
Dry AM (g.)	50.97	51.03	51.20	50.97	51.52	51.23	51.75	50.40	50.87	50.57	51.34	54.32
Sep. Mass (g.)	Cell 1	3.53	Cell 2	3.45	Cell 3	3.48	Cell 4	3.52	Cell 5	3.50	Cell 6	3.48


Termination	Copper stud soldered to terminal electrode
Containment Type	Solvent bonded ABS. Container core thickness = 0.671".
Containment Mass	3.4908 kg


FORMATION

Acid Gravity	Chilled 1.265		
% Sodium Sulfate	1.5		
Method of Fill	Vacuum		
Time			
Amps	1		
Voltage Limit	16.32		
Amp Hours	20.62		
Watt Hours	NA		
Internal Resistance	12 mΩ	 	

CYCLING HISTORY

				Discharge						Recharge	echarge	
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rchg
1	2/16/96	10.5	13.009	21	9.6	1.1	12.7	0.5	15.30	1.21	16.4	110
2	2/16/96	11.0	13.137	124	7.2	0.72	6.6	0.5	15.30	0.79	10.8	110
3	2/19/96	12.0	12.866	21	9.6	0.71	7.9	0.5	15.30	0.78	10.5	110
	2/26/96	Replaced to	wo shorted	bipolar elec	trodes.							
4	2/27/96	11.5	13.200	21	9.6	1.33	12.0	0.5	14.40	1.46	17.0	110
5	2/28/96	11.0	13.005	124	7.2	0.82	7.0	0.5	14.40	0.90	10.0	110

